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Abstract

Cryptographic algorithms are often modeled as idealized mappings from input to out-
put. This is a problematic over-simplification. A villain determined to break cryptog-
raphy will use all available information and will not restrict himself to the analysis of
ciphertexts and public key material. So-called side-channel attacks demonstrate that
characteristics such as the timing behavior of an algorithm’s implementation can be
effectively exploited for cryptanalysis.

In this thesis, we provide mathematically rigorous methods that allow for the de-
tection, quantification, and elimination of side-channels. We focus on side-channels
due to timing behavior and side-channels that arise from thread interleavings in mul-
tithreaded programs.

We present a novel method for detecting timing leaks in synchronous systems. The
method is based on a parameterized and timing-sensitive notion of security that al-
lows for the fine-grained modeling of information leakage. We present an efficient de-
cision procedure for system security and show how it can be implemented in standard
model-checking tools. We also present a model of adaptive side-channel attacks, which
we combine with information-theoretic metrics to quantify the information revealed
to an attacker. This allows us to express an attacker’s remaining uncertainty about a
secret as a function of the number of side-channel measurements made. We present
algorithms and approximation techniques for computing this measure. Furthermore,
we demonstrate how both of our methods can be used to analyze the resistance of
hardware implementations of cryptographic functions to timing attacks.

We also present a method to detect and eliminate side-channels due to thread inter-
leavings in multithreaded programs. Our approach uses unification on sub-programs
to enforce that a program’s alternative execution paths do not reveal information about
the secrets involved in branching decisions. We demonstrate that integrating our ap-
proach into an existing transforming type system can improve the precision of the
analysis and the quality of the resulting programs.
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Kurzfassung

Kryptographische Algorithmen werden oft idealisiert als Funktionen von Eingaben
auf Ausgaben modelliert. Dies ist eine problematische Vereinfachung, da sich ein An-
greifer nicht auf die Analyse von öffentlichen Schlüsseln und Chiffraten beschränken
muss, sondern auch andere verfügbare Informationen mit einbeziehen kann. In so-
genannten Seitenkanalangriffen wurde gezeigt, dass es möglich ist, Charakteristika
der Implementierung von kryptographischen Algorithmen, wie zum Beispiel deren
Zeitverbrauch, für die Kryptoanalyse auszunutzen.

Die vorliegende Arbeit stellt mathematische Methoden bereit, um Seitenkanäle zu
erkennen, zu quantifizieren und zu beseitigen. Der Schwerpunkt liegt hierbei auf Sei-
tenkanälen durch Laufzeitcharakteristika und durch Scheduler-Verhalten in nebenläufi-
gen Programmen.

Wir stellen einen neuen Ansatz zur Erkennung von laufzeitbasierten Seitenkanälen
in synchronen Systemen vor. Die Grundlage dieses Ansatzes ist ein parametrisierter
Sicherheitsbegriff, der es erlaubt, die preisgegebene Information genau zu beschreiben.
Wir stellen ein effizientes Entscheidungsverfahren für die Sicherheit eines Systems
vor und wir zeigen, wie es in handelsüblichen Modelcheckern implementiert werden
kann. Des weiteren stellen wir ein Modell adaptiver Angriffe vor. Wir kombinieren
dieses Modell mit Metriken aus der Informationstheorie. Dies erlaubt uns, die In-
formation zu quantifizieren, die durch einen adaptiven Seitenkanalangriff gewonnen
werden kann und die Unsicherheit des Angreifers über den Wert eines Geheimnisses
als eine Funktion der durchgeführten Messungen auszudrücken. Wir stellen Algorith-
men und Näherungsverfahren bereit, um diese Metriken zu berechnen und zeigen, wie
Hardware-Implementierungen von kryptographischen Funktionen mit Hilfe unserer
Methoden auf Schwachstellen durch Seitenkanalangriffe untersucht werden können.

Weiter stellen wir eine Methode vor, um schedulingbasierte Seitenkanäle in Pro-
grammen mit mehreren Threads zu erkennen und zu entfernen. Unser Ansatz wendet
Unifikation auf Unterprogramme an und erreicht dadurch, dass Verzweigungen im
Kontrollfluss keine Information über die Verzweigungsbedingung preisgeben. Wir in-
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tegrieren diesen Ansatz in ein existierendes transformierendes Typsystem und zeigen,
dass dadurch die Präzision der Analyse und die Qualität der ausgegebenen Programme
erhöht werden kann.
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Chapter 1

Introduction

Cryptographic algorithms are often modeled as idealized mappings from input to out-
put. This is a problematic over-simplification. A villain determined to break cryptog-
raphy will use any available information and will not restrict himself to the analysis of
ciphertexts and public key material. Information that has proven valuable for crypt-
analysis includes the cryptosystem’s timing characteristics [43, 15], its cache behavior
[62], its power consumption [44], and its electromagnetic emanations [68, 33] during
computation. Attacks that exploit the information revealed by an algorithm’s physical
execution are called side-channel attacks. Such attacks sidestep cryptographic security
guarantees and are now so effective that they pose a real threat to systems that can be
subjected to different kinds of measurements.

Side-channels are instances of covert channels, which are unintended ways of sig-
naling information in computing environments. An information-flow analysis aims at
detecting or guaranteeing the absence of covert channels. Ideally, the security guar-
antees obtained by such an analysis are rigorously backed up by mathematical proof.
Many mathematical methods for the analysis of different kinds of covert channels have
been developed. Maybe surprisingly, existing work does not provide satisfactory so-
lutions for reasoning about side-channel attacks against cryptography – arguably the
most daunting and certainly the best-documented threat within the scope of the field.

In this thesis, we investigate two different kinds of side-channels and develop math-
ematically rigorous methods for their analysis and elimination. In the first part of this
thesis, we investigate side-channels that arise due to the timing behavior of crypto-
graphic algorithms. We develop models and algorithms for their detection and for
characterizing the information that is revealed through them. In the second part, we
investigate scheduling side-channels, which are side-channels that arise due to thread
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2 CHAPTER 1. INTRODUCTION

interleavings in multithreaded programs. We develop a method for the security anal-
ysis of multithreaded programs that automatically removes certain scheduling side-
channels by applying a transformation to the given program.

Throughout this thesis, we aim to provide a uniform presentation wherever pos-
sible. To this end, we develop a parameterized notion of secure information flow
that we instantiate to capture both timing side-channels in synchronous hardware and
scheduling side-channels in multithreaded programs.

In the remainder of this chapter, we will present the two kinds of side-channels
that are relevant for our work. We will then briefly introduce, and discuss the scope
of, formal methods for information-flow analysis. This allows us to identify concrete
research goals. We conclude with a summary of our contributions towards achieving
those goals.

1.1 Side-Channels

A channel is a mechanism for communicating information in a computing system. A
covert channel is a channel whose primary use is not information transfer. Typically,
the existence of such channels is unintended by design. Covert channels have received
considerable attention in the context of multi-user operating systems, where processes
can communicate via patterns in using, or obtaining locks on, shared resources such as
disk space, memory, and processor time. Exploiting covert channels typically requires
the cooperation of a sending and a receiving process.

In this thesis, we focus on covert channels that arise when a program unintention-
ally reveals information about the data it computes with. What constitutes a covert
channel in this setting depends on a (possibly remote) observer of the program and
his capabilities for distinguishing computations of the program with different data. To
emphasize that the program does not intentionally reveal information and that the ob-
server need not be a process on the same machine, we will use the terms information
leak or side-channel instead of the term covert channel.

Below, we give examples of the side-channels of interest for this thesis: side-channels
due to timing behavior and side-channels due to thread interleavings in multithreaded
programs.
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1. x := 1

2. for i := p− 1 to 0
3. x := x ∗ x

4. if k[i] = 1 then

5. x := x ∗ c

6. return x

Figure 1.1: Modular exponentiation with a timing side-channel

1.1.1 Timing Side-Channels

A program has a timing side-channel if an observer can distinguish between compu-
tations with different secret input values by means of a clock.

We illustrate timing side-channels with an example from cryptography. For two
reasons, timing leaks in cryptographic algorithms are arguably the most relevant in-
stance of timing side-channels: first, they have been successfully exploited, as a con-
siderable number of documented attacks show [43, 15, 19, 2]. Second, many of the
attacks against timing leaks in cryptographic algorithms successfully recover secret
key material, which is highly sensitive information.

Example 1.1. The RSA decryption step is a single modular exponentiation operation,
in which a plaintext m is derived from a ciphertext c and a secret key k by computing
m = ck mod n for a given n ∈ N. Figure 1.1 shows a a simple square-and-multiply
algorithm for modular exponentiation. Here, the basis c is stored in a variable c, the
exponent k is stored in an array k of p bits, and ∗ denotes multiplication modulo n.
Consider the conditional branch in line 4. The multiplication operation in line 5 is
carried out only if the ith exponent bit is set to 1. It is not difficult to see that, in
this way, the algorithm’s overall running time depends on the number of 1-bits in the
exponent. An observer who can measure the running time of this algorithm will be
able to deduce information about the exponent which, in the case of RSA decryption,
is the decrypting agent’s secret key. ♦

Example 1.1 illustrates a timing leak, but it is not obvious how such a leak can
be exploited to systematically recover the key. An example of such a key recovery
attack is given in Section 4.2. An important prerequisite for this and for many similar
exploits is that the attacker can observe a large number of computations with different
ciphertexts, which he can choose at his discretion.
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h = 0 I if h then (skip; l := 1) else l := 1 ‖ skip; l := 0

if h then (skip; l := 1) else l := 1 ‖ I skip; l := 0

if h then (skip; l := 1) else I l := 1 ‖ skip; l := 0

if h then (skip; l := 1) else l := 1 ‖ skip;I l := 0 l = 0

h = 1 I if h then (skip; l := 1) else l := 1 ‖ skip; l := 0

if h then (skip; l := 1) else l := 1 ‖ I skip; l := 0

if h then (I skip; l := 1) else l := 1 ‖ skip; l := 0

if h then (skip; l := 1) else l := 1 ‖ skip;I l := 0

if h then (skip;I l := 1) else l := 1 ‖ skip; l := 0 l = 1

Figure 1.2: Scheduling side-channel

Several countermeasures have been proposed to eliminate timing side-channels,
which we discuss in Section 7.1. In this thesis, we will focus solely on methods for
detecting and quantifying timing side-channels.

1.1.2 Scheduling Side-Channels

A multithreaded program has a scheduling side-channel when a scheduler maps secret-
dependent variations in the control flow of individual threads to variations in the ob-
servable output of the program.

Example 1.2. The program C1 = if h then (skip; l := 1) else l := 1 does not reveal the
value of the variable h to an observer who may only see the value of the variable l after
C1 has terminated. However, if C1 runs as a parallel thread with C2 = skip; l := 0 under
a round-robin scheduler that assigns a time-slice to every instruction (including skip),
the final value of l reflects the initial value of h. Figure 1.2 illustrates this phenomenon
with two executions of C1 ‖ C2 in which h is initially set to 0 and 1, respectively, and
where Imarks the instruction pointer’s position. ♦

Scheduling channels are an important obstacle to provably secure computation
in multithreaded programs and they have received considerable attention from re-
searchers in language-based information flow. Their practical relevance, however, re-
mains unclear: we are not aware of any documented exploit of a scheduling channel
in software that has not been written for demonstration purposes.
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Which countermeasures against scheduling side-channels are appropriate depends
on the assumptions about the scheduler’s behavior, and we will discuss different ap-
proaches in Section 7.2.3. In Example 1.2, where we assume that the scheduler assigns
one time-slice to each instruction, the scheduling process can be decoupled from h’s
value by inserting a skip before the assignment in C1’s second branch.

1.2 Formal Methods and Models

Informally, a program has secure information flow if it keeps secrets confidential dur-
ing computation, that is, if it has no side-channels. Three ingredients are required
for a mathematically rigorous (synonymously: a formal) analysis of a program’s infor-
mation flow. The first is a mathematical representation (a model) of the program that
performs the computation. The second is a mathematical representation of what we
mean by secure information flow (a flow property), which must be expressed in terms
of the program model. A violation of this flow property implies the existence of a
channel through which secret information is revealed. The third is a mathematically
sound method for determining whether a given program is secure, that is, a method
for determining whether the model satisfies the flow property.

Analyzing the information flow in a program requires techniques that go beyond
the analysis of safety and liveness properties. Rather than inspecting each of the pro-
gram runs in isolation, the entirety of possible program behaviors must be analyzed
[55, 91]. In particular, it is not possible to dynamically enforce all information flow
properties using techniques such as execution monitoring [80] without severely re-
stricting the program’s behavior. Static analysis, on the other hand, allows one to de-
rive guarantees that cover the entirety of program runs.

Example 1.3. Security type systems for programming languages [74] are examples of
such a formal, static analysis technique. The model of a program is given in terms of
a formal semantics for the programming language. The flow property is expressed in
terms of this semantics. Security type systems are a syntax-driven method for stati-
cally enforcing a program’s security: a successful type check implies that the program
satisfies the flow property, a claim that is typically backed up by a soundness proof
of the type system. However, most security type systems produce false negatives: a
failed type check does not imply that a side-channel indeed exists. ♦

Formal approaches for analyzing side-channels have advantages and pitfalls, and
we briefly discuss those that are relevant for this thesis. A clear advantage of using
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mathematical language is that it leaves no ambiguity about what is meant by, e.g.,
“secure information flow.” Another advantage is that formal reasoning techniques can
support a designer in determining whether a model actually satisfies the desired flow
property. Ideally, this process can be automated. Security type systems, for example,
provide mechanized support for checking that a program is secure, while keeping the
overhead for the programmer low.

However, mathematical security guarantees need to be interpreted with care: they
do not cover threats against features of the real system that are not reflected in the
model. Choosing an adequate system model is thus a crucial prerequisite for a mean-
ingful formal security analysis. Below, we will motivate our choices of models for this
thesis.

1.2.1 Timing Models

A model for analyzing a program’s timing side-channels must faithfully reflect the
timing behavior of the program’s implementation. A formal analysis of implementa-
tions on today’s multi-purpose processors does not seem feasible, as providing pre-
cise timing models is currently out of reach. Giving upper bounds for the real-time
behavior of multi-purpose processors is already a daunting task [67], and is still not
sufficient for proving the absence of timing side-channels. In this thesis, we therefore
approach the problem at a lower level of abstraction. Namely, we analyze timing side-
channels at the level of synchronous (clocked) hardware, which is interesting because
special-purpose hardware implementations of cryptographic algorithms are important
in resource-critical application domains. As is standard, we model synchronous cir-
cuits as Mealy machines in which one transition corresponds to one clock tick. The
hardware description language GEZEL [78, 77, 79] provides the link between the model
and concrete hardware implementations. Namely, GEZEL allows for the specification
of synchronous circuits in terms of automata, and it comes with a tool for translat-
ing the designs into a subset of the industrial-strength hardware description language
VHDL. The translation is cycle-true, which means that it preserves the timing behavior
within the granularity of clock ticks. Moreover, the output is synthesizeable, i.e. it can be
mapped to a physical implementation. In this way, the security guarantees obtained by
a formal analysis translate into guarantees for real-world hardware implementations.
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1.2.2 Scheduling Models

For the analysis of scheduling side-channels, we follow the literature in the field and
use a more abstract system model. We formalize multithreaded programs in terms
of the operational semantics of a simple programming language with dynamic thread
creation. As in Example 1.2, we assume that each time-slice allows for the execution of
exactly one command in the language. An advantage of this assumption is that it leads
to a simple model that allows one to study thread interleavings, which are the essence
of scheduling side-channels. However, security guarantees that are obtained by a for-
mal analysis using this model translate directly only to systems with schedulers that
behave according to our assumptions. For modeling systems in which a scheduler’s
time-slices are based on the elapse of processor time, one is faced with problems like
those sketched in Section 1.2.1. This is why we use the term scheduling leak instead of
the term internal timing leak, which is often used in the literature.

1.3 Problem Statement

Below, we identify three obstacles to automatically detecting, quantifying, and elimi-
nating information leaks.

Detecting Timing Side-Channels. There is a large body of work on rigorous meth-
ods for analyzing timing side-channels in high-level programming languages. How-
ever, there is only one formal approach that tackles timing leaks in hardware circuits
[88, 87]. This approach is based on a security type system for VHDL and provides only
an approximate solution to the problem of detecting timing leaks in hardware: it is
tailored to VHDL and, like other type-based approaches, produces false negatives.

It has been an open problem to detect information leaks in synchronous hardware.

Quantifying Side-Channels. While the outcome of a standard information flow anal-
ysis is binary – either the program satisfies the security property or it does not – quan-
titative approaches aim to assess how much information is actually revealed. Existing
approaches quantify the information that a passive observer can gain, but they do not
adequately capture attackers who can interact with the system as in typical exploits.
These interactions are often expensive or limited, and a meaningful quantitative mea-
sure must take their number into account.
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It has been an open problem to quantify the information that an adaptive attacker can extract
from a system’s side-channels within a given number of measurements.

Eliminating Scheduling Side-Channels. Security type systems are an attractive lan-
guage-based approach for detecting scheduling leaks. Typically, however, type check-
ing is not a decision procedure for security, and a non-successful type check leaves
the programmer with two open questions: whether the program is indeed insecure
and, if so, how this flaw can be corrected. Transforming type systems address both
problems. During the type-check, potential leaks are removed from the program and,
hence, more programs are accepted as secure. However, today’s transforming type
systems lack precision: they correct only a subset of the programs that are intuitively
correctable.

It has been an open problem to support the automated correction of insecure programs.

1.4 Contributions

This section gives an overview of our contributions to solving the problems sketched in
Section 1.3. We have published our main results in [46], [47], and [48, 49], respectively.

Detecting (Timing) Side-Channels. Our contribution is a formal method for ana-
lyzing the information flow in hardware implementations. For this, we extend well-
studied notions of confidentiality to a model of synchronous hardware. Our notion of
security captures (but is not restricted to) timing side-channels. We give algorithms
and complexity bounds for efficiently deciding system security, and we show how our
decision procedures can be encoded in off-the-shelf model checkers. We demonstrate
the feasibility of a hardware-level information-flow analysis by analyzing nontrivial
examples.

Quantifying Side-Channels. We solve the problem of quantifying the information
that an adaptive attacker can extract from a deterministic and stateless side-channel.
Technically, our contribution is a model of adaptive attacks, which we combine with
information-theoretic metrics to derive a meaningful measure of what an attacker can
achieve within a given number of side-channel measurements. We show that our
model can be easily automated and we apply it to analyze hardware implementations
of cryptographic algorithms for their vulnerability to adaptive side-channel attacks.
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Eliminating Scheduling Side-Channels. A program is secure if all program runs
look identical to an observer. This intuitive notion of security can be expressed as the
program relating to itself under a (non-reflexive) relation on program terms. We build
on this characterization to develop a novel technique for repairing insecure programs.
Namely, we apply unification to program terms in order to relate a program to itself
and thus achieve security. We use this approach to improve an existing security type
system.

Our contribution is a transforming type system that improves on previous transfor-
mations to enforce scheduler-independent security in the sense that it can repair pro-
grams for which all previously existing approaches fail. Furthermore, we improve the
quality of corrections: programs resulting from a transformation by our type system
are more efficient and smaller in size than when transformed by related approaches.

1.5 Outline

The remainder of this thesis is structured as follows. In Chapter 2, we introduce the
system models and the notions of secure information flow that we use throughout this
thesis. In Chapter 3, we present efficient algorithms for detecting information leaks in
deterministic and nondeterministic finite-state systems. Moreover, we show how to
implement the algorithm for the deterministic case in a temporal logic model-checker.
In Chapter 4, we show how to express and determine the information that is leaked
through a side-channel both quantitatively and qualitatively. In Chapter 5, we present
a unification-based transforming type system for eliminating scheduling leaks from
multithreaded programs. In Chapter 6, we evaluate the techniques developed in Chap-
ters 3 and 4 by analyzing hardware implementations of cryptographic algorithms. We
present related work and conclude in Chapters 7 and 8, respectively.
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Chapter 2

Background

2.1 Introduction

In this chapter, we introduce the building blocks of a rigorous information flow analy-
sis, namely, a formal system model and a formal notion of secure information flow. We
carve out the common basis behind the two kinds of side-channels of interest for this
thesis. To this end, we define a general system model and a parametric flow property
that we later instantiate to capture both scheduling leaks in multithreaded programs
and timing leaks in synchronous hardware.

Apart from the conceptual appeal of having a general basis for both kinds of side-
channels, our approach has a concrete advantage over a separate treatment: the pro-
cedures we develop for deciding system security (see Chapter 3) are applicable for
both detecting timing leaks in synchronous hardware and scheduling leaks in multi-
threaded programs with finite memory.

We begin with a brief overview of equivalence relations and partitions – two no-
tions we will use extensively throughout this thesis.

2.2 Equivalence Relations and Partitions

An equivalence relation on a set S is a binary relation R ⊆ S × S that is reflexive, transi-
tive, and symmetric. The (R-)equivalence class [x]R of x ∈ S is the set of all elements of
S that relate to x under R, i.e, [x]R = {y ∈ S | x R y}. The quotient set S/R is the set
of all R-equivalence classes, i.e., {[x]R | x ∈ S}. A partial equivalence relation (Per) on S
is a binary relation Q ⊆ S× S that is transitive and symmetric. The domain of a partial

11
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equivalence relation Q is the set dom(Q) = {x ∈ S | x Q x} on which Q is reflexive,
and hence an equivalence relation.

A partition of a set S is a set π = {B1, . . . , Bn} of pairwise disjoint blocks with the
requirement that

⋃n
i=1 Bi = S. A refinement of a partition π is a partition π′ such that

every block of π′ is contained in some block of π. This relationship is denoted by
π′ ≤ π. For A ⊆ S and a partition π of S, we define the restriction of π to A as
{A ∩ B | B ∈ π} and denote it by A ∩ π. Clearly, A ∩ π is a partition of A. For
partitions π1 and π2, we define π1 ∩ π2 as the partition {A ∩ B | A ∈ π1, B ∈ π2}.
Clearly, π1 ∩ π2 v π1 and π1 ∩ π2 v π2.

Equivalence relations and partitions are closely related. The quotient set S/R of an
equivalence relation R ⊆ S × S is a partition of S. Conversely, a partition π of S gives
rise to an equivalence relation Rπ on S, where x Rπ y if and only if there is a B ∈ π

with x ∈ B and y ∈ B.

2.3 Languages and System Models

Throughout this thesis, we use transition systems as a general system model. In this
section, we first give a definition of such transition systems. Subsequently, we define
specializations that are tailored to the two classes of systems of interest for this thesis:
multi-threaded programs and synchronous hardware circuits, respectively.

Definition 2.1. A transition system is a 5-tuple M = (S, Σ, Γ, δ, s0), where S is a set of
states, Σ is an input alphabet, Γ is an output alphabet, δ ⊆ S× Σ× Γ× S is a transition
relation, and s0 ∈ S is the initial state. A transition system is input enabled if for all s ∈ S
and a ∈ Σ, there is a b ∈ Γ and a s′ ∈ S with (s, a, b, s′) ∈ δ. A transition system is finite,
if S, Σ, and Γ are finite sets. We write δ(s, a, b) to denote the set {s′ | (s, a, b, s′) ∈ δ}.

In the remainder of this thesis, we will mainly consider input-enabled transition
systems, and we will usually leave this implicit. The transition systems representing
multi-threaded programs are possibly infinite, and we use a programming language
for their finite representation. The transition systems representing synchronous hard-
ware circuits will be finite, and we only informally sketch their syntactic representa-
tion.
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2.3.1 Synchronous Hardware

In our case studies, we specify synchronous circuits in terms of the hardware descrip-
tion language GEZEL. GEZEL allows for circuits to be described as datapaths with a
finite-state controller that can easily be interpreted as Mealy machines, i.e. determinis-
tic transition systems. Below, we will illustrate the syntax of GEZEL using an example.
Subsequently, we will define Mealy machines as our formal model of synchronous
hardware and sketch the (informal) translation of GEZEL code to this model. For a full
reference for the GEZEL language, refer to [77].

GEZEL Syntax by Example

The basic design unit in GEZEL is a module. A module consists of a datapath and a
finite state controller and communicates by means of input and output signals. Signals
(keyword: sig) represent wires that carry integer values of a fixed bit-width. A data-
path (dp) consists of registers and signal flow graphs. A register (reg) stores an integer
of a fixed bit-width and a signal flow graph (sfg) is a sequence of assignments l:=r,
where l is a register or an output signal, and where r is an arithmetic expression over
input signals and registers. A register may be assigned to at most once during each
clock cycle and has the assigned value in the subsequent cycle. An output signal must
be assigned to exactly once during each clock cycle. The controller (fsm) schedules the
execution of signal flow graphs and is specified in terms of a finite automaton in which
every transition corresponds to one clock cycle. Transitions may conditionally depend
on boolean expressions over signals and registers and they are labeled with the sig-
nal flow graphs to be executed during the corresponding cycle. Cyclic dependencies
between signal assignments in the signal flow graphs of one transition are forbidden.

Example 2.1. Figure 2.1 depicts a GEZEL implementation of a counter. The datapath
counter (lines 1 to 8) has two 4-bit input signals start and stop, an output signal done
and two 4-bit registers current and upper for storing the counter’s current and maxi-
mal values, respectively. The datapath contains signal flow graphs for initializing the
counter’s bounds (init), increasing the counter (oneup) and for signaling termination
(term and noterm). The controller counter_ctl (lines 9 to 16) represents an automaton
with three states s0, s1, and s2. Lines 12 to 15 specify that, after an initialization step in
line 12, the automaton remains in state s1 until the value of current reaches the value
of upper. Then the automaton signals termination and loops in state s2. ♦
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1. dp counter(in start, stop : ns(4);

2. out done : ns(1)) {

3. reg current, upper : ns(4);

4. sfg init {current=start; upper=stop;}

5. sfg oneup {current=current+1;}

6. sfg term {done=1;}

7. sfg noterm {done=0;}

8. }

9. fsm counter_ctl(counter) {

10. initial s0;

11. state s1, s2;

12. @s0 (init, noterm) -> s1;

13. @s1 if (current==upper) then (term) -> s2;

14. else (oneup,noterm) -> s1;

15. @s2 (term) -> s2;

16. }

Figure 2.1: A counter in GEZEL

Semantics

As is standard [29], we use Mealy machines as a semantic model for synchronous hard-
ware circuits and we assume that one transition corresponds to one clock cycle of a
global clock. We will be particularly interested in Mealy machines that compute using
the input provided in their initial state and that ignore all inputs given in subsequent
states.

Definition 2.2. A Mealy machine is a finite transition system M = (S, Σ, Γ, δ, s0) where
the transition relation δ ⊆ S×Σ× Γ× S is a function on S×Σ. We call a Mealy machine
triggered if s0 has no ingoing transitions and if for all a, b ∈ Σ and for all s ∈ S \ {s0}
(s, a, c1, s1), (s, b, c2, s2) ∈ δ implies c1 = c2 and s1 = s2.

Examples of triggered Mealy machines are the counter of Example 2.1 and all of the
circuits we will present in Chapter 6.

Giving GEZEL a semantics in terms of Mealy machines is straightforward. Input
and output signals are mapped to Σ and Γ, respectively, which will be of the form
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{0, 1}n, for some n ∈ N. The set of states S is the Cartesian product of the set of
possible register values and the set of control states in the datapath’s controller. The
transition function δ is specified by the datapath’s controller.

Example 2.2. Our formal representation of the counter of Example 2.1 is a Mealy ma-
chine M = (S, Σ, Γ, δ, s0) with S = {s0, s1, s2} × {0, 1}4·2, Σ = {0, 1}4·2 and Γ = {0, 1}.
Here, S is the product of the set of control states with the set of possible values of the
registers current and upper. Σ and Γ represent the possible values of the input and
output signals, respectively. Deriving δ from lines 11-15 of the code in Figure 2.1 is
straightforward. ♦

2.3.2 Multithreaded Programs

We specify programs with multiple threads in terms of the multi-threaded while lan-
guage (MWL) from [75]. Below, we briefly define the syntax and the operational se-
mantics of MWL. For an introductory text to the formal semantics of programming
languages see, e.g., [95].

Syntax

The language includes assignments, conditionals, loops, and a command for dynamic
thread creation. We represent programs as vectors of threads, where the set of single
threads Com is given by the grammar

C ::= skip | Id := Exp | C1; C2 | if B then C1 else C2 | while B do C | fork(CV) .

Here, C, C1, C2 denote programs in Com and Id ranges over a set of variable identifiers
Var. Exp and B denote arithmetic and boolean expressions that consist of variables,
constants, or terms resulting from applying binary operators to expressions. They will
not be further specified. We represent multi-threaded programs V = 〈C0, . . . , Cn〉 as
vectors of threads (also called thread pools), that is, as elements of ~Com =

⋃
n∈N Comn.

We will identify thread pools of length 1 with single threads. We denote the con-
catenation of two thread pools V = 〈C0, . . . , Cn〉 and W = 〈C′

0, . . . , C′
m〉 by VW, i.e.

VW = 〈C0, . . . , Cn, C′
0, . . . , C′

m〉.

Semantics

Let Var be an arbitrary set of variable identifiers and let Val be an arbitrary set. A
memory is a mapping ν from variables in Var to values in Val. We denote the set of all
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〈|skip, ν|〉 _ 〈|〈〉, ν|〉 〈|Exp, ν|〉 ↓ n
〈|Id := Exp, ν|〉 _ 〈|〈〉, [Id = n]ν|〉

〈|C1, ν|〉 _ 〈|〈〉, µ|〉
〈|C1; C2, ν|〉 _ 〈|C2, µ|〉

〈|C1, ν|〉 _ 〈|〈C′
1〉V, µ|〉

〈|C1; C2, ν|〉 _ 〈|〈C′
1; C2〉V, µ|〉

〈|B, ν|〉 ↓ True

〈|if B then C1 else C2, ν|〉 _ 〈|C1, ν|〉
〈|B, ν|〉 ↓ False

〈|if B then C1 else C2, ν|〉 _ 〈|C2, ν|〉
〈|B, ν|〉 ↓ True

〈|while B do C, ν|〉 _ 〈|C; while B do C, ν|〉
〈|B, ν|〉 ↓ False

〈|while B do C, ν|〉 _ 〈|〈〉, ν|〉

〈|fork(CV), ν|〉 _ 〈|〈C〉V, ν|〉

Figure 2.2: Operational semantics of threads

memories ν : Var → Val by Mem. For ν ∈ Mem, Id, Id′ ∈ Var and n ∈ Val, we denote by
[Id = n]ν the memory defined by ([Id = n]ν)(Id) = n, and ([Id = n]ν)(Id′) = ν(Id′) if
Id 6= Id′.

We use the judgment 〈|Exp, ν|〉 ↓ n to denote that expression Exp evaluates to value
n in memory ν and we assume that expression evaluation is total. We say that ex-
pressions Exp and Exp′ are equivalent (denoted by Exp≡Exp′) if and only if they eval-
uate to identical values in each memory, i.e. if for all memories ν ∈ Mem we have
〈|Exp, ν|〉 ↓ n ⇔ 〈|Exp′, ν|〉 ↓ n. A configuration is a pair 〈|V, ν|〉, with threads V ∈ ~Com
and memory ν ∈ Mem.

The operational semantics for MWL is formalized in Figures 2.2 and 2.3 and com-
prises deterministic and nondeterministic transitions. Deterministic transitions (see Fig-
ure 2.2) are denoted by 〈|C, ν|〉 _ 〈|W, µ|〉, expressing that a single thread C performs a
computation step with memory ν, yielding a new memory µ and a thread pool W. W
has length zero if C has terminated, length one if C has neither terminated nor spawned
any new threads, and length greater than one if new threads were spawned.

Nondeterministic transitions (see Figure 2.3) model the execution of a multi-threaded
program on a single processor and are denoted by 〈|V, ν|〉 _ 〈|W, µ|〉, where V and W
are thread pools, expressing that some thread Ci in V performs a step with memory
ν resulting in memory µ and some thread pool W ′. The global thread pool W results
then by replacing Ci with W ′.

Nondeterminism models the possible thread choices of a scheduler, but it does not
mandate any particular scheduling strategy. As information flow properties are, in
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〈|Ci, ν|〉 _ 〈|W ′, µ|〉
〈|〈C0 . . . Cn−1〉, ν|〉 _ 〈|〈C0 . . . Ci−1〉W ′〈Ci+1 . . . Cn−1〉, µ|〉

Figure 2.3: Operational semantics of thread pools

general, not preserved under refinement [52] (e.g., the choice of a particular sched-
uler), using a possibilistic system model for an information flow analysis needs to be
justified. This justification is the subject of [75], where Sabelfeld and Sands give a prob-
abilistic semantics for ~Com that is based on an explicit model of a scheduler, together
with a probabilistic notion of security. The authors put forward strong security, a notion
of secure information flow that can be expressed in terms of a possibilistic semantics
for ~Com, and they prove that strong security implies probabilistic security for a large
class of schedulers, including round-robin and uniform schedulers. In this thesis, we
will analyze programs with respect to strong security, hence it is sufficient to work with
the more abstract, possibilistic semantics for ~Com.

Multi-threaded programs as transition systems

It is intuitively clear that the semantics of MWL defines a transition system. We will
make this intuition explicit by giving two alternative interpretations of the operational
semantics as a transition system according to Definition 2.1.

In a transition 〈|V, ν|〉 _ 〈|V ′, µ|〉, the thread pools V and V ′ take the role of the states
of a transition system, the memory ν takes the role of the input to the system, and the
memory µ takes the role of the output of the system. For this, observe that mappings
of type Var → Val can be represented as elements of an alphabet ∏v∈Var Val = ValVar.
Choosing thread pools as states and allowing arbitrary memories as inputs to every
transition is required for expressing strong security, which we will use as a notion
of secure information flow in multi-threaded programs. When a program is actually
executed, the input may be given in terms of the initial memory only.

We say that W ∈ ~Com is reachable from V ∈ ~Com if there are memories ν0, ν1, . . . , νn

and thread pools V = V0, V1, . . . , Vn = W such that 〈|Vi, νi|〉 _ 〈|Vi+1, νi+1|〉 is derivable
for 0 ≤ i ≤ n− 1.

Definition 2.3. The transition system induced by V ∈ ~Com is defined as MV = (SV , ΣV ,
ΓV , δV , V), where SV ⊆ ~Com is the set of programs that are reachable from V, and
where ΣV = ΓV = ValVar. For W, W ′ ∈ SV and ν, ν′ ∈ Mem we define (W, ν, ν′, W ′) ∈ δ

if and only if 〈|W, ν|〉 _ 〈|W ′, ν′|〉 is derivable.
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Next we will give an alternative definition of an induced transition system, where
we augment the output of each transition with scheduling-relevant data, namely, the
number of currently active threads and the index of the thread that was scheduled for
execution in this transition.

Definition 2.4. We define the augmented transition system induced by V ∈ ~Com as
M̂V = (SV , ΣV , Γ′V , δ′V , V), where SV , ΣV and ΓV are as in Definition 2.3 and where
Γ′V = ΓV × N × N. For W = 〈C0, . . . , Cn−1〉, W ′ = 〈C0, . . . , Ci−1〉W ′′〈Ci+1, . . . , Cn−1〉
and ν, ν′ ∈ Mem, we define (W, ν, (ν′, n, i), W ′) ∈ δ if and only if 〈|W, ν|〉 _ 〈|W ′, ν′|〉 is
derivable.

Note that M̂V outputs (ν′, n, i) during a transition only if the ith thread from a pool
of n threads is scheduled for execution. As we assume that expression evaluation is
total in MWL, the transition relation of M̂V is defined for every input unless V has
terminated. To formally make M̂V input enabled, one can add (〈〉, ν, (ν, 0, 0)), 〈〉) for
every ν ∈ Mem to δ.

It is not difficult to see that if the set of variable values Val is finite, then the transi-
tion system induced by a single thread without fork() (that is, without dynamic thread
creation) is finite. Consequently, the transition system induced by a thread pool with-
out dynamic thread creation and with finite memory is also finite.

2.4 Expressing Secure Information Flow

A system keeps secrets confidential during computation if it exhibits secure informa-
tion flow. In this section, we will show how secure information flow can be formally
expressed. As in [53], we introduce (and distinguish between) flow policies and flow
properties.

Flow policies are high-level requirements regarding the flow of information between
abstract security domains. Examples of security domains are classifications such as
“confidential” and “non-confidential” and a typical requirement is that no confiden-
tial information may flow into the non-confidential domain. Flow policies are system
independent; in particular, they are independent of any particular means of signaling
information.

By contrast, flow properties are low-level requirements regarding the flow of infor-
mation in a system and they are expressed in terms of a model of the system and a
model of its observer. The observer model expresses an agent’s capabilities for dis-
tinguishing variations in the system’s behavior due to different input data, thereby
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capturing a potential side-channel. A flow policy can be mapped to a flow property by
associating both the system’s input and the system’s observer with security domains.

Below, we will introduce flow policies and a parameterized flow property, and we
will show how to implement a given flow policy by instantiating the parameters of the
flow property.

2.4.1 Flow Policies

A flow policy is a pair (D, ), where D is a nonempty finite set of security domains and
where ⊆ D × D is a reflexive and transitive binary relation, which we call the flow
relation. For two security domains A, B ∈ D, the relationship A  B denotes that
information may flow from A to B. Conversely, if A 6 B, then the flow of information
from A to B is forbidden.

Example 2.3. Consider two security domains, one for confidential (high) and one for
non-confidential (low) information, together with the requirement that no information
must flow from the confidential into the non-confidential domain. This requirement is
formalized by the policy P0 = ({H, L}, ), where H and L represent the domains for
high and low data, respectively, and where  = {H  H, L  L, L  H}. We will
often abbreviate P0 as H 6 L. ♦

Throughout this thesis, we focus on the policy P0. As the following example shows,
we do not lose any generality with this restriction.

Example 2.4. Consider an arbitrary flow policy P = (D, ) with |D| ≥ 2 (Note that
a flow policy with |D| = 1 does not pose any restrictions on the flow of information
and is thus trivially fulfilled). Enforcing P means guaranteeing that there is no illegal
information flow into any D ∈ D. To express this requirement in terms of P0, define
LD = D, and identify all E ∈ D for which E 6 D is required with HD. In this way,
enforcing P can be reduced to enforcing HD 6 LD for every D ∈ D. We will use
this reduction in Example 5.9, where we enforce a multi-level flow policy using a type
system for P0. ♦

2.4.2 A Parametric Flow Property

We model the information flow in a program with respect to an observer of the pro-
gram. An observer is modeled in terms of two parameters that express what he can
observe of the program’s behavior, and what he may know about the program’s input.
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The program satisfies the flow property if, for all possible inputs, what the observer
can see does not allow him to refine what he may know about the input. We will show
how the parameters can be instantiated to express both secure information flow and
the leakage of a well-defined part of the input.

Technically, we model the observer in terms of his capabilities for distinguishing
different program behaviors.

Distinguishing atomic inputs and outputs. We capture that the observer cannot dis-
tinguish between two outputs a, b ∈ Γ with an equivalence relation RO ⊆ Γ× Γ. We say
that a and b are observationally equivalent, or simply RO-equivalent, if and only if a RO b.
In other words, if the system outputs x ∈ Γ, the observer can only deduce the equiv-
alence class [x]RO . Similarly, we use the equivalence relation RI ⊆ Σ × Σ to model to
what extent the observer may know the inputs of the system. If the system computes
with input x, the observer may only know that some element of [x]RI is processed.

In the following, IdX denotes the identity on a set X and AllX denotes X × X. For
relations R ⊆ Γ1 × Γ1 and Q ⊆ Γ2 × Γ2, we overload notation and define R × Q ⊆
(Γ1 × Γ2)2 as (r1, q1) (R× Q) (r2, q2) if and only if r1 R r2 and q1 Q q2.

Example 2.5. The relation RO = AllΓ formalizes an observer who cannot distinguish
between any two system outputs. In contrast, the relation RO = IdΓ models an observer
who can determine the (singleton) IdΓ-equivalence class of the output, or equivalently,
who can precisely determine the output. If Σ = Σ1 × Σ2, the relation RI = IdΣ1 ×
AllΣ2 models an observer who may only know the Σ1-component of the input. We can
also model more fine-grained capabilities. Consider, for example, Σ = {0, 1}n and the
predicate ΨΣ = {(a, b) ∈ Σ× Σ | ‖a‖ = ‖b‖}, where ‖x‖ denotes the Hamming weight
of x, i.e. the number of bits set to 1. ΨΣ models that an observer may only know the
Hamming weight (determine the ΨΣ-equivalence class) of the input. ♦

RI/RO-security. Two states of a system are observationally equivalent if every output
from one state can be matched by an RO-equivalent output from the other state when-
ever the corresponding inputs are RI-equivalent, and if the resulting states are again
observationally equivalent. We capture this observational equivalence of states by
RI/RO-equivalence, a parameterized notion of strong bisimulation. RI/RO-equivalence
allows one to distinguish program behaviors that differ with regard to the number of
transitions that lead to some output, thereby capturing timing behavior.
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Definition 2.5 (RI/RO-Equivalence). Let M = (S, Σ, Γ, δ, s0) be an automaton with
output, and let RI ⊆ Σ2 and RO ⊆ Γ2 be equivalence relations. We define 'RI

RO
as the

union of all symmetric and transitive relations R on S with the property that for all
s1, s2 ∈ S:

s1 R s2 ⇒ ∀a1, a2 ∈ Σ.(a1 RI a2 ⇒ ∀(s1, a1, o1, s′1) ∈ δ.
∃(s2, a2, o2, s′2) ∈ δ.
s′1 R s′2 ∧ o1 RO o2).

(2.1)

Two states s1, s2 ∈ S are RI/RO-equivalent iff s1 'RI
RO

s2.

It is easy to see that 'RI
RO

is a partial equivalence relation on S and that 'RI
RO

itself
satisfies Property (2.1) of Definition 2.5.

Example 2.6. Consider the Mealy machine from Example 2.2. If the observer may
know the input to start but not that to stop (that is, RI relates all inputs with identical
start-components) and if he can see whether the done flag is set (that is, RO = IdΓ),
then M is not RI/R0 secure: for a fixed value of start, M produces distinguishable
sequences of output when it receives different values of stop in s0. Hence s0 6'RI

RO
s0. ♦

In general, if the initial state of a system is not observationally equivalent to itself,
then running the system on RI-equivalent input sequences may lead to observable dif-
ferences in the system behavior. This constitutes a refinement of the observer’s knowl-
edge about the input (modeled by RI), and thus is an information leak. We will make
this refinement explicit in Section 4.3.4. If, on the other hand, the initial state is obser-
vationally equivalent to itself, then we say that the system is RI/RO-secure.

Definition 2.6 (RI/RO-Security). Let M = (S, Σ, Γ, δ, s0) be a transition system and let
RI ⊆ Σ2 and RO ⊆ Γ2 be equivalence relations. Then M is RI/RO-secure iff s0 'RI

RO
s0.

The idea that security can be modeled as a system being observationally equivalent
to itself is formalized in the Per model of secure information flow [76].

2.4.3 Mapping Flow Policies to Flow Properties

To turn a flow policy P = (D, ) into a flow property on a transition system M =
(S, Σ, Γ, δ, s0), we need to interpret D and in terms of M. We illustrate this with the
policy P0 = H 6 L. As Example 2.4 shows, arbitrary flow policies can be reduced to
this case.
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Mapping Security Domains to I/O. We assume that high and low inputs are pro-
vided simultaneously to the system and we model this by choosing Σ = ΣH × ΣL,
where ΣH and ΣL are the sets of possible high and low inputs, respectively. Similarly,
we assume that the output consists of high and low components, that is, Γ = ΓH × ΓL.

Example 2.7. In the case of synchronous hardware circuits, the set of input signals is
split into signals that carry confidential data ΣH = {0, 1}n and input signals that carry
non-confidential data ΣL = {0, 1}m, that is, Σ = {0, 1}m+n. Output signals are split
analogously. ♦

Example 2.8. In a programming-language setting, a security domain is assigned to
every variable in Var. This corresponds to a partitioning of Var according to the security
domains in D. For D = {H, L} we have Var = VarH ] VarL, where VarL and VarH

are the variables of low and high domains, respectively. Consequently, we have Σ =
ValVarL ×ValVarH for the transition system induced by a multithreaded program. ♦

As notation, we write ν =L µ to denote that memories ν, µ ∈ Mem coincide on the
variables of domain L, i.e., that ν (AllH × IdL) µ holds.

Mapping Flow Relations to RI/RO-security. The policy that no information must
flow from the high into the low domain, i.e. H 6 L, corresponds to the requirement
that an observer with low clearance must not be able to distinguish variations in the
system behavior that result from different high inputs. This requirement is captured
by AllΣH × IdΣL /AllΓH × IdΓL-security, which is often coined non-interference and which
we will abbreviate as NI-security.1 More generally, we say that AllΣH × IdΣL /RO-secure
programs have secure information flow, as their execution does not leak any secret infor-
mation to the observer modeled by RO; that is, they have no side-channel with respect
to this observer.

2.4.4 Examples

In this section, we will take a closer look at variants of non-interference on different
system models and for different observers. In Section 4.3.4, we will investigate how
RI/RO-security can also be used to express the leakage of a well-defined portion of
the secret input. When Σ is understood, we write IdL as an abbreviation for IdΣL . We
abbreviate analogously for AllΣL , Γ and the high domain.

1Non-interference was originally defined in a different context [37], but has become the standard
term for naming the absence of illegal information flow in many settings.
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Example 2.9. On Mealy machines,'AllH×IdL
AllH×IdL

represents a notion of observational equiv-
alence closely related to Agat’s Γ-bisimulation [4]. In Agat’s approach, timing is cap-
tured by transition labels that represent the duration of the corresponding operations
on the underlying machine. Γ-bisimulation relates programs in which the timing be-
tween observable events is equivalent. In our setting, one transition of the Mealy ma-
chine corresponds to one clock cycle in a synchronous circuit. Hence, a NI-secure cir-
cuit does not leak any secret information to a low observer who can determine the
circuit’s execution time up to single clock ticks. ♦

Example 2.10. For a multithreaded program V and the induced transition system MV ,
NI-security represents a possibilistic notion of security similar to Volpano and Smith’s
concurrent non-interference [84], which has been used to model the security of multi-
threaded programs in the presence of a purely nondeterministic scheduler. Note that
NI-security is more restrictive with respect to the number of transitions that lead to
an output, as it is based on strong bisimulation equivalence, as opposed to the weak
bisimulation-based concurrent non-interference. ♦

Strong security is a security property on multithreaded programs that corresponds
to the policy P0. A program that satisfies strong security does not leak high information
to a low observer, in the presence of an arbitrary scheduler. Strong security assumes
an observer who can see the values of the low variables during the entire program run.
By interpreting certain low variables as communication channels, strong security can
be used for capturing information leaks through patterns in a program’s observable
communication.

Definition 2.7 ([75]). The strong low-bisimulation uL is the union of all symmetric re-
lations R on command vectors V, V ′ ∈ ~Com of equal size, i.e. V = 〈C1, . . . , Cn〉 and
V ′ = 〈C′

1, . . . , C′
n〉, such that

∀ν, ν′, µ ∈ Mem.∀i ∈ {1 . . . n}.∀W ∈ ~Com.
[(V R V ′ ∧ ν =L ν′ ∧ 〈|Ci, ν|〉 _ 〈|W, µ|〉)
⇒ ∃W ′ ∈ ~Com.∃µ′ ∈ S.(〈|C′

i , ν′|〉 _ 〈|W ′, µ′|〉

∧W R W ′ ∧ µ =L µ′)] .

(2.2)

Similar to the definition of RI/RO-security, a program V is defined as strongly secure iff
V uL V.

The following example shows how strong security on multithreaded programs can
be seen as an instance of RI/RO-security.
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Example 2.11. Observe that strong low-bisimulation only relates thread pools (1) with
the same number of threads and (2) in which threads of equal indices are low-bisimilar.
By assuming that scheduling-relevant information is visible to the observer, one can
also express (1) and (2) in terms of RI/RO-equivalence. For this, recall that the output
alphabet of the augmented transition system M̂V is of the form Γ′V = ValVar ×N×N,
where the second and third components of (ν, n, i) ∈ Γ′V represent the number of cur-
rently active threads and the index of the thread scheduled for execution, respectively.
Note that (1) corresponds to observational equivalence with respect to an observer
who can determine the number of threads in a program, that is, the second component
of the output of M̂V . (2) corresponds to observational equivalence with respect to an
observer who can determine the index of the thread that is scheduled for execution,
that is, the third component of the output of M̂V . Hence, V is strongly secure if and
only if M̂V is (AllH × IdL)/((AllH × IdL)× IdN × IdN)-secure. Note that this property
is termination-sensitive even if M̂V is input-enabled, as termination of V is signaled in
terms of 0 active threads. ♦

2.5 Summary

In this chapter, we introduced transition systems as a general system model, and we
showed how they can be specialized to both models of synchronous hardware and
models of multithreaded programs. We also introduced RI/RO-security, a parametric
flow property, and we showed how it can be instantiated to both strong security (for
multithreaded programs) and a timing-sensitive notion of non-interference (for syn-
chronous hardware). This underlying common basis allows us to use the algorithms
from Chapter 3 for detecting both timing leaks in hardware and scheduling leaks in
multithreaded programs with finite induced transition systems.



Chapter 3

Detecting Side-Channels

3.1 Introduction

A system has a side-channel if it exhibits insecure information flow. Detecting side-
channels hence corresponds to deciding whether a system has secure information flow,
which we model in terms of RI/RO-security. In this chapter, we give procedures for
deciding the RI/RO-security of transition systems with finite alphabets and a finite
number of states. For deterministic systems (i.e., for Mealy machines), we reduce de-
ciding RI/RO-security to a reachability problem on a special kind of product Mealy
machine. In the nondeterministic case, we reduce it to a generalization of the Partition
Refinement Problem. Moreover, we show how the decision procedure for determinis-
tic systems can be easily implemented using the symbolic model checker SMV. When
given an insecure system, SMV produces a counterexample, that is, a sequence of input
symbols that lead to distinguishable output. We report on experimental results with
our prototype in Chapter 6, where we use it to analyze hardware implementations of
cryptographic algorithms for their resistance to timing attacks.

3.2 Deterministic Case

We first reduce the problem of deciding the RI/RO-equivalence of states to a reacha-
bility problem on a special kind of product machine. This may seem surprising as, in
general, information flow properties are properties of sets of traces rather than prop-
erties of individual traces [55]. The intuition behind our construction is that every
sequence of inputs to the product machine corresponds to a pair of input sequences
of the original machine. As RI/RO-equivalence is transitive, it suffices to analyze each

25



26 CHAPTER 3. DETECTING SIDE-CHANNELS

individual input sequence of the product machine in order to establish RI/RO-security
for the original system.

Definition 3.1. Let Mi = (Si, Σ, Γ, δi, s0,i), with i ∈ {1, 2}, be Mealy machines and
let RI and RO be equivalence relations on Σ and Γ, respectively. The RI/RO-product
M1 ×RI

RO
M2 is the Mealy machine (S1 × S2, RI , {0, 1}, δ′, (s0,1, s0,2)), where

δ′ = {((s1, s2), (a, b), χ, (t1, t2)) | a RI b ∧ (χ = if c RO d then 1 else 0) ∧
(s1, a, c, t1) ∈ δ1 ∧ (s2, b, d, t2) ∈ δ2} .

A falsifying state is a state with an outgoing transition labeled with 0, that is, where
c RO d is violated. We now show that deciding the observational equivalence of states
is equivalent to determining whether a falsifying state can be reached in M×RI

RO
M.

Theorem 3.1. Let M = (S, Σ, Γ, δ, s0) be a Mealy machine, RI ⊆ Σ × Σ and RO ⊆ Γ × Γ
equivalence relations, and let s1, s2 ∈ S. Then

s1 'RI
RO

s2 ⇔ no falsifying state is reachable from (s1, s2) in M×RI
RO

M .

Proof. (⇒) We show that no input w ∈ (RI)∗ can trigger a transition labeled with 0.
We proceed by induction on the length of w. The assertion is clear for w = ε. Suppose
now that w = (a, b)w′. As s1 'RI

RO
s2 and δ is a function, there are unique transitions

(s1, a, c, t1) and (s2, b, d, t2) ∈ δ, with t1 'RI
RO

t2 and (c, d) ∈ RO. Hence M ×RI
RO

M
outputs 1 on this transition and we apply the induction hypothesis to (t1, t2) and w′.

(⇐) We show that Q = {(t1, t2) | (t1, t2) can be reached from (s1, s2)} fulfills (2.1) of
Definition 2.5. Pick (t1, t2) ∈ Q and (a, b) ∈ RI . Since δ is a function, there are unique
transitions (t1, a, c, t′1) and (t2, b, d, t′2) ∈ δ. Clearly, (t′1, t′2) can also be reached from
(s1, s2) in M×RI

RO
M and, as no transition labeled with 0 can be triggered by assumption,

(c, d) ∈ RO holds. Hence Q is contained in the union of all relations with (2.1) of
Definition 2.5. �

Theorem 3.1 justifies a simple decision procedure for RI/RO-equivalence that is
based on searching the RI/RO-product. We use breadth-first search, as it will find a
shortest path to a falsifying state.

Corollary 3.1. Let M = (S, Σ, Γ, δ, s0) be a Mealy machine, let s1, s2 ∈ S, and let RI ⊆ Σ and
RO ⊆ Γ be equivalence relations. Then s1 'RI

RO
s2 can be decided in time O(|S|2|RI |), given

the product M×RI
RO

M.
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Proof. Breadth-first search can be implemented in time O(|V| + |E|) on a graph G =
(V, E). M ×RI

RO
M has |S|2 states and |S|2|RI | transitions. This yields an O(|S|2|RI |)

upper bound for the time complexity of deciding RI/RO-equivalence.

By determining whether s0 'RI
RO

s0 holds for the initial state s0, Corollary 3.1 allows
one to efficiently decide the RI/RO-security of a Mealy machine M.

3.3 Nondeterministic Case

A straightforward extension of the above reduction does not appear possible in the
nondeterministic case. In a similar nondeterministic product machine, a falsifying
transition shows only that both underlying transitions produce distinguishable out-
put, which does not imply a violation of nondeterministic RI/RO-security. Instead, we
use a partition refinement-based algorithm for deciding process equivalence [42] as a
starting point. We introduce the more general Partial Partition Refinement problem,
and we cast the problem of deciding RI/RI-equivalence of states in arbitrary finite-
state transition systems as an instance. We then generalize the algorithm from [42] and
apply it to decide RI/RO-equivalence.

The Partition Refinement Problem is, given a partition π of a set S and a property
P of partitions of S, to find the coarsest refinement π′ of π such that π′ satisfies P. This
is equivalent to finding the greatest equivalence relation Rπ′ , with Rπ′ ⊆ Rπ, such that
Rπ′ satisfies P. Since RI/RO-equivalence is a partial equivalence relation, we need to
generalize the Partition Refinement Problem. The Partial Partition Refinement Problem is,
given a partial equivalence relation R and a property P, to find the coarsest refinement
R′ of R, such that R′ satisfies P. We next show that the problem of deciding RI/RO-
equivalence can be cast as an instance of this problem. Then, generalizing the ideas in
[42], we compute this coarsest refinement as the maximal fixed point of a monotone
mapping Θ.

A partial partition of a set S is a pair 〈{A1, . . . , An}, C〉, where the Ai are pairwise
disjoint blocks with

⋃n
i=1 Ai ∪ C = S and

⋃n
i=1 Ai ∩ C = ∅. There is a one-to-one cor-

respondence between Pers R of a set S and partial partitions 〈{A1, . . . , An}, C〉, where
the Ai correspond to the equivalence classes of R, and C = S \ dom(R). As notation, we
denote this correspondence as 〈{A1, . . . , An}, C〉 =̂ 〈R, C〉. Let π1 = 〈{A1, . . . , An}, C1〉
and π2 = 〈{B1, . . . , Bm}, C2〉 be partial partitions of S. We define π1 ≤ π2 to hold
whenever C1 ⊇ C2 and if every block of π1 is contained in some block of π2. The
relation ≤ is a partial order on the set of all partial partitions of a set S. In fact, it is
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also a lattice when we define the meet u as 〈{A1, . . . , An}, C1〉 u 〈{B1, . . . , Bm}, C2〉 =
〈{Ai ∩ Bj | i ∈ {1, . . . , n}, j ∈ {1, . . . , m}}, C1 ∪ C2〉

In the remainder of this subsection, let M = (S, Σ, Γ, δ, s0) be a finite transition
system, and let RI ⊆ Σ× Σ and RO ⊆ Γ× Γ be equivalence relations.

Definition 3.2. An RI/RO-partition of S is a partial partition 〈{A1, . . . , An}, C〉 of S, with

∀i, j ∈ {1, . . . , n}. ∀s1, s2 ∈ Ai. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO .
δ(s1, a1, x) ∩ Aj 6= ∅ ⇔ δ(s2, a2, x) ∩ Aj 6= ∅ ∧
δ(s1, a1, x) ∩ C = δ(s2, a2, x) ∩ C = ∅ ,

(3.1)

where δ(s, a, x) denotes the set
⋃

c∈x δ(s, a, c). A RI/RO-partition π of S is maximal if
π ≥ π′ holds for every RI/RO-partition π′ of S.

We adapt (3.1) of Definition 3.2 to a mapping on partial partitions whose fixed
points are precisely the RI/RO-partitions of S. To this end, let π = 〈{A1, . . . , An}, C1〉 =̂
〈R1, C1〉 be a partial partition of S. We define Θ(π) := 〈R2, S \ dom(R2)〉, where s1 R2 s2

if and only if

s1 R1 s2 ∧ ∀j ∈ {1, . . . , n}. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO .
δ(s1, a1, x) ∩ Aj 6= ∅ ⇔ δ(s2, a2, x) ∩ Aj 6= ∅ ∧
δ(s1, a1, x) ∩ C1 = δ(s2, a2, x) ∩ C1 = ∅ .

Lemma 3.1. Let 〈R, C〉 be a partial partition of the set of states S. Then the following are
equivalent:

1. 〈R, C〉 is a fixed point of Θ.

2. 〈R, C〉 is a RI/RO-partition of S.

3. R satisfies (2.1) of Definition 2.5.

Proof. (1. ⇒ 2.) The assertion follows by setting R1 = R2 = R in the definition of Θ,
and observing that two states s1 and s2 relate in R whenever they are contained in the
same set Ai of the corresponding partial partition.

(2. ⇒ 3.) Let s1 R s2, a1 RI a2, and (s1, a1, c1, s′1) ∈ δ. As δ(s1, a1, [c1]) ∩ C = ∅, we have
s′1 ∈ δ(s1, a1, [c1]) ∩ A for some equivalence class A of R. By hypothesis, we also have
δ(s2, a2, [c1]) ∩ A 6= ∅, and hence there is a transition (s2, a2, c2, s′2) ∈ δ with c1 RO c2

and s′1 R s′2.
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(3. ⇒ 1.) Let 〈R, C〉 =̂ 〈{A1, . . . , An}, C〉 and Θ(〈R, C〉) = 〈R′, C′〉. It suffices to show
that R′ = R. The implication R′ ⊆ R follows directly from the definition of Θ. To
show that R ⊆ R′, choose s1 R s2 and a1 RI a2. If δ(s1, a1, x) ∩ Aj 6= ∅, then there is a
(s1, a1, c1, s′1) ∈ δ with c1 ∈ x and s′1 ∈ Aj. As R satisfies (2.1) of Definition 2.5, there
is also a (s2, a2, c2, s′2) ∈ δ, with c2 ∈ x and s′2 ∈ Aj. Hence δ(s2, a2, x) ∩ Aj 6= ∅, and
R ⊆ R′ follows. �

From Lemma 3.1, it follows that the relation 'RI
RO

is a maximal fixed point of the
function Θ. In particular, 'RI

RO
itself satisfies (2.1) of Definition 2.5 and is thus con-

tained in every maximal fixed point of Θ. Conversely, as every fixed point of Θ satis-
fies Property (2.1), the maximal fixed point is contained in 'RI

RO
, the union of all such

relations.

The following theorem gives rise to a construction for maximal RI/RO-partitions.

Theorem 3.2. There is a unique maximal RI/RO-partition π∗ of S, namely, π∗= Θn(〈{S}, ∅〉),
for some n ∈ N.

Proof. We show that Θ is monotone with respect to ≤. Since the set of partial partitions
of S is a complete lattice, it follows from the Knaster-Tarski fixed point theorem that a
unique maximal fixed point of Θ exists (see, e.g., [95]). By Lemma 3.1, this fixed point
is also a maximal RI/RO-partition.

For the monotonicity of Θ, consider the partial partitions π1 = 〈{A1, . . . , An}, C1〉 =̂
〈Q1, C1〉 and π2 = 〈{B1, . . . , Bm}, C2〉 =̂ 〈Q2, C2〉, where π1 ≤ π2. Furthermore, let
Θ(π1) = 〈Q′

1, C′
1〉 and Θ(π2) = 〈Q′

2, C′
2〉. We need to show that s1 Q′

1 s2 implies
s1 Q′

2 s2. Assume s1 Q′
1 s2. By the definition of Θ, this implies s1 Q1 s2, which implies

s1 Q2 s2. Furthermore, for all (a1, a2) ∈ RI , and for all x ∈ Γ/RO , we have δ(s1, a1, x) ∩
C1 = δ(s2, a2, x) ∩ C1 = ∅. As C1 ⊇ C2, we also have δ(s1, a1, x) ∩ C2 = δ(s2, a2, x) ∩
C2 = ∅. Finally, let (a1, a2) ∈ RI and x ∈ Γ/RO , and suppose s′1 ∈ δ(s1, a1, x) ∩ Bi. s′1
is also contained in some Aj ⊆ Bi, as otherwise this would contradict the assumption
δ(s1, a1, x) ∩ C1 = ∅. Then, as s1 Q′

1 s2, we also have δ(s2, a2, x) ∩ Aj 6= ∅. Hence we
conclude δ(s2, a2, x) ∩ Bi 6= ∅. The proof that δ(s2, a2, x) ∩ Bi 6= ∅ implies δ(s1, a1, x) ∩
Bi 6= ∅ follows along the same lines and concludes the proof of the monotonicity of Θ.

As S is finite, the lattice of partial partitions of S is also finite and hence complete.
The Knaster-Tarski fixed-point theorem guarantees the existence of a unique maximal
fixed point π∗. We have Θ(π) ≤ π for every partial partition π of S, and hence itera-
tively applying Θ to π> = 〈{S}, ∅〉 leads to the fixed point π∗ = Θn(π>) after a finite
number of steps n.



30 CHAPTER 3. DETECTING SIDE-CHANNELS

Theorem 3.2 provides the basis of an algorithm for deciding the RI/RO-equivalence
of states in polynomial time.

Corollary 3.2. For two states s1, s2 ∈ S, we can decide s1 'RI
RO

s2 in time

O(|S|4 · |RI | · |Γ/RO |) ,

under the assumption that δ(s, a, x) =
⋃

c∈x δ(s, a, c) can be determined in O(1) for all s ∈ S,
a ∈ Σ, and x ∈ Γ/RO .

Proof. It suffices to show that a single application of Θ can be computed in timeO(|S|3 ·
|RI | · |Γ/RO |). Due to Theorem 3.2, a fixed point can be obtained by iteratively applying
Θ. As Θ(π) ≤ π for every partition π, this process terminates within at most |S|
applications.

We assume S = {s1, . . . , sn} and that the equivalence class of each state is given
by a representative si with minimal i, and by a distinguished symbol ∗ 6∈ S if the
state is outside the domain of the relation. For example, in the case of π> = 〈{S}, ∅〉,
the canonical representative for every state is s1. Suppose now we are given a partial
partition π = 〈R, C〉 and we want to compute Θ(π) = 〈R′, C′〉. To decide whether two
states si and sj relate in R′, we perform the following procedure: for all (a1, a2) ∈ RI ,
and for all x ∈ Γ/RO , we compare the corresponding sets of R-equivalence classes of
the target states. If all of the corresponding sets coincide, si and sj are in the same R′-
equivalence class. By iterating i stepwise from 1 to n, we perform this check for every
j ∈ {1, . . . , n}. Under this ordering, the canonical representative of the R′-equivalence
class of each sj is the si with minimal index such that equivalence of si and sj can be
established, and ∗ if there is no such si. In this way, each application of Θ can be
computed in time O(|S|3 · |RI | · |Γ/RO |).

Similar to the deterministic case, Corollary 3.2 allows one to efficiently decide the
RI/RO-security of a Mealy machine M by determining whether s0 'RI

RO
s0 holds for the

initial state s0.

3.4 An Implementation

In this section, we present an implementation of our algorithm for deciding the RI/RO-
security of deterministic systems. Instead of implementing the search procedure from
Corollary 3.1 by hand, we use a temporal logic model-checker for this task. Temporal
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1. MODULE main

2. VAR

3. lo,hi1,hi2 : array (n-1)..0 of boolean;

4. sys1 : system;

5. sys2 : system;

6. ASSIGN

7. sys1.lo_in:=lo;

8. sys1.hi_in:=hi1;

9. sys2.lo_in:=lo;

10. sys2.hi_in:=hi2;

11. SPEC !EF(!sys1.lo_out=sys2.lo_out)

Figure 3.1: Product construction in SMV

logic model-checking allows for the verification whether a transition system satisfies a
specification given in temporal logic [23]. In the model-checker SMV, the verification is
based on the efficient manipulation of binary decision diagrams (BDD) and allows sys-
tems with very large state spaces to be verified. By implementing our search procedure
in SMV, we make use of these sophisticated techniques and data structures. The use of
alternative temporal logic model-checkers such as SPIN [41], which relies on the lazy
explicit enumeration of states, is straightforward. A detailed investigation of which
model-checking technique is more adequate for the class of systems considered in this
thesis, e.g. along the lines of [12], is beyond the scope of this work.

Figure 3.1 lists an SMV-fragment that encodes the product construction ×AllH×IdL
AllH×IdL

of
Definition 3.1. The system to be analyzed is an arbitrary module (a SMV-specification
of a transition system) that we call system and that reads input ΣL and ΣH from vari-
ables lo_in and hi_in, respectively, and that writes output to the variables lo_out and
hi_out. In our example ΣL = ΣH = ΓL = ΓH = {0, 1}n for some n ∈ N. For building
the product, we instantiate system twice in lines 4 and 5. Both instances, sys1 and sys2,
are provided with the same low input lo (as specified by IdΣL), and are provided with
combinations of high inputs hi1 and hi1, respectively (as specified by AllΣH ). This is
implemented in lines 7-10. In fact, all such input combinations are considered, as no
assignments are made to the variables lo, hi1, and hi2.

Reachability of a falsifying state of the product corresponds to a violation of the
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CTL-formula !EF(!sys1.lo_out=sys2.lo_out) in line 11. If we reach a state in which
the lo_out variables of the two instances of system differ, then we have found a falsi-
fying state of the product. In this case, SMV computes a counterexample, namely, two
AllH × IdL-equivalent input sequences that lead to distinguishable low output.

We will report on experimental results in Section 6.3, where we use this implemen-
tation to detect (and prove the absence of) timing leaks in GEZEL-implementations of
algorithms for integer multiplication and finite field exponentiation, and where we
discuss its performance.

3.5 Summary
We presented algorithms and complexity bounds for deciding RI/RO-security for both
deterministic and nondeterministic finite-state transition systems. Our decision proce-
dure for nondeterministic systems can be applied to, e.g., nondeterministic models of
hardware and for deciding strong security of multithreaded programs with finite in-
duced transition systems. We showed how our decision procedure for the security of
deterministic systems can be encoded in the model-checker SMV. Our experimental
results in Section 6.3 show that this prototype implementation is a powerful tool for
accurately analyzing the information flow in synchronous hardware, which has been
an open problem until now.



Chapter 4

Quantifying Side-Channels

4.1 Introduction

In this chapter, we develop a method for quantifying the amount of secret information
that an attacker can extract from a system’s side-channels.

As was shown in Chapter 3, the detection of side-channels in deterministic systems
corresponds to deciding whether an adversary can distinguish system runs with differ-
ent secret inputs. For this, it suffices to consider passive attackers, i.e., mere observers
of the system. In a number of documented side-channel attacks, however, the attacker
is more powerful, in the sense that he can interactively provide input to the system. In
this way, he can partially control the system and direct its behavior towards maximiz-
ing the leakage of confidential information. A meaningful quantitative measure must
take these interactions into account. In particular, it must allow for reasoning about
their number, as the attacker’s interactions with the system are often expensive or lim-
ited. In this chapter, we present such a measure and show how it can be computed for
a given system.

For this, we first give a definition of attack strategies, which are explicit representa-
tions of the adaptive decisions made by an attacker during attacks. We combine attack
strategies with information-theoretic entropy measures; this allows us to express the
attacker’s expected uncertainty about the secret after he has performed a side-channel
attack following a given strategy. By quantifying over all attack strategies of a fixed
length n, we express what attackers can, in principle, achieve in n attack steps. We use
this to define a function Φ that gives a lower bound on the expected uncertainty about
the secret as a function of the number of side-channel measurements. Since the bounds
given by Φ are information-theoretic, they hold for any kind of analysis technique that a

33
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computationally unbounded attacker might apply to analyze the measurements. Note
that such strong bounds are realistic. In template attacks [21], the entire information
contained in each measurement is effectively exploited for the recovery of the secret.

We give algorithms and (exponential) complexity bounds for computing Φ. Further-
more, we propose two heuristic techniques that reduce this complexity and thereby
allow us to estimate the vulnerability of systems of a size for which the direct compu-
tation of Φ is infeasible.

Our approach is parametric in the physical characteristics of the side-channel, which
can be described by deterministic hardware models of the target system. In this way,
the accuracy of our method depends only on the accuracy of the system model used.
Furthermore, our approach accommodates different notions of entropy that correspond
to different kinds of brute-force guessing.

Finally, we have implemented our approach in the functional programming lan-
guage HASKELL [14]. We report on experimental results using the resulting prototype
in Chapter 6.4, where we analyze hardware implementations of cryptographic algo-
rithms for their resistance to timing attacks.

4.2 A Timing Attack

To motivate our formal model of attack strategies, we briefly sketch a timing attack
against modular exponentiation. We choose the attack from [31] for its simplicity.

Consider again the simple square-and-multiply modular exponentiation algorithm
from Example 1.1. Assume an implementation that computes ∗ with Montgomery’s
algorithm [61] for modular multiplication, which is a common choice in practice. An
important property of Montgomery multiplication is that it is typically performed fast
and in approximately constant time. For some input values, however, so-called Mont-
gomery reductions have to be performed, which are very time-consuming operations.

Assume an attacker who has knowledge about this implementation and who can
measure the algorithm’s running times on the target system. Furthermore, assume that
he can trick the target system into decrypting arbitrary ciphertexts c (as, e.g., in [15]).

Under these assumptions, the attacker can extract the secret key k as follows. Sup-
pose he already knows key bits kp−1, . . . , ki. For determining the i − 1st bit, he ran-
domly chooses a set A of possible inputs (i.e., ciphertexts) to the algorithm. Comput-
ing the loop for key bits p − 1, . . . , i on his private machine, he partitions A into two
disjoint sets A1 and A2: A1 is the subset of inputs for which a Montgomery reduction
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has to be carried out when computing x ∗ c in line 5 of the p− ith pass of the loop. A2 is
the set of initial values of c for which no such reduction is necessary. The attacker now
uses the target system for decrypting all inputs from A and measures the correspond-
ing running times. If the average running time for inputs from A1 is higher than that
for inputs from A2, the attacker concludes that the target system indeed computes x ∗ c

in the p − ith pass of the loop – and hence the p − ith key bit must be 1.1 In this way,
he can successively extract the entire key from the system.

Note that this particular attack is not adaptive, as the attacker chooses his inputs
at random. However, nothing in the attack scenario prevents the attacker from opti-
mizing his queries with respect to previously revealed side-channel information. This
must be taken into account when giving bounds on what attackers can, in principle,
achieve in a side-channel attack.

4.3 Attack Strategies

In this chapter, we present our model of attack strategies. It is based on an explicit
representation of the side-channel to be analyzed, which allows for a simpler presen-
tation. We will point out the precise connections to the system models and security
notions from Chapter 3.

4.3.1 Attackers and Side-Channel Measurements

Attack Scenario. Let ΣH be a finite set of secrets, ΣL be a finite set, and D be an ar-
bitrary set. We consider cryptographic functions of type F : ΣH × ΣL → D, where we
assume that F is invoked by two collaborating callers. One caller is an honest agent
that provides a secret argument h ∈ ΣH and the other caller is a malicious agent (the
attacker) that provides the argument l ∈ ΣL. Examples of F are encryption and de-
cryption functions and MACs. We assume that the attacker has no access to the values
of h and F(h, l), but that he can subject F’s implementation IF to side-channel mea-
surements.2 Typically, the secret h is a long-term secret such as a key, which remains
constant during different calls to F. The malicious agent performs an attack in order
to gather information to deduce h or narrow down its possible values. Such an attack

1Note that this rationale relies on the assumption that all other timing variations, such as Mont-
gomery reductions in other passes of the loop, manifest as random noise.

2For many cryptographic functions F (for example, the one-time pad), the knowledge of F(h, l) and l
determines h, which would yield trivial information-theoretic bounds.
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consists of a sequence of attack steps, each with two parts: a query phase, in which the
attacker decides on an input l and sends it to the system, and a response phase, in which
he observes IF while it computes F(h, l). The attack is adaptive if the attacker can use the
observations made during the first n steps to choose the query for the n+1st step. An
attack ends if either the honest agent changes the secret (assuming the independence
of the old and new secrets) or if the attacker stops querying the system.

Explicit Models of Side-Channels. We assume that the attacker can make one side-
channel measurement per invocation of the function F and that no errors occur in the
measurement. We assume that the attacker has full knowledge about the implemen-
tation IF. Furthermore, we assume that the attacker’s side-channel measurements are
independent of IF’s internal state and that they depend only on the values of the input
to IF. Given our assumptions, an (explicit) side-channel is a function f IF : ΣH × ΣL → O,
where O is the set of possible observations, and we assume that f IF is known to the
attacker. We will usually leave IF implicit and abbreviate f IF as f .

Example 4.1. Suppose that F is implemented in synchronous (clocked) hardware and
that the attacker is able to determine IF’s running times up to single clock cycles. Then
the timing side-channel of IF can be modeled as a function f : ΣH × ΣL → N that
represents the number of clock ticks consumed by an invocation of F. ♦

If the function f accurately models the side-channel, then any randomness in a
physical attacker’s measurements is due to noise and the assumption of error-free mea-
surements is a safe worst-case characterization of the attacker’s capabilities.

Although one can take this direct approach to modeling side-channels, they can
also be given in terms of the Mealy machine models from Chapter 2.3.

Example 4.2. If infinite system runs are considered, a triggered Mealy machine M =
(S, Σ, Γ, δ, s0) defines a function fM : Σ → Γω, where Γω = N → Γ and where fM(a)
denotes the infinite sequence of outputs produced by M when it is provided with input
a in its initial state. We lift an equivalence relation RO ⊆ Γ × Γ to an equivalence
relation on Γω by defining u RO v for u, v ∈ Γω if and only if u(i) RO v(i) for all
i ∈ N. Suppose now Σ = ΣH × ΣL. The function f RO

M : ΣH × ΣL → Γω/RO given
by f RO

M (h, l) = [ fM(h, l)]RO defines the explicit side-channel of M with respect to an
attacker with observational capabilities given by RO. ♦

Example 4.2 connects the notion of side-channels from Chapter 2 with the definition
of explicit side-channels given in this chapter. This connection will allow us to give an



4.3. ATTACK STRATEGIES 37

interpretation of RI/RO-security in terms of the quantitative model we will present in
Section 4.4.

As the next example shows, f can also be derived from the implementation IF.

Example 4.3. Suppose a hardware implementation IF of F is given. As in template
attacks [21], average values of IF’s time consumption for fixed input values h and l can
be used to define f (h, l). ♦

As in template attacks, the attacker can use noise models of the target implemen-
tation to extract the maximal information from his measurements, that is, the value of
f .

Finally, it is straightforward to model that the attacker has (partial) knowledge of
the values of F.

Example 4.4. Consider a function F : ΣH × ΣL → D, with D = {0, 1}n for some n ∈ N,
an arbitrary side-channel f : ΣH × ΣL → O of IF, and a function g : D → E mapping to
an arbitrary set E. By interpreting the function (g ◦ F, f ) : ΣH × ΣL → E×O defined as
(g ◦ F, f )(h, l) = (g(F(h, l)), f (h, l)) as the side-channel, one can model that the attacker
has access to the information given by f and g ◦ F. Possible instantiations of g include
the identity, projections to components of D, and the Hamming weight of values in D.
♦

4.3.2 Formalizing Attack Strategies

An adaptive attacker chooses his queries with the knowledge of previously revealed
side-channel information. We use trees to define attack strategies, which capture these
adaptive choices. Subsequently, we also formalize non-adaptive attacks, that is, attacks
in which the attacker gathers all side-channel information before performing any anal-
ysis. To begin with, we motivate an abstract view of attack steps, which is the key to
the simplicity of our model.

Attacker’s Choices and Knowledge. During the query phase, the attacker decides
which input l ∈ ΣL to query the system with. In the response phase, he learns the
value f (h, l). In general, he cannot deduce h from f (h, l). What he can deduce, though
(assuming full knowledge about the implementation IF and unbounded computational
power), is the set of secrets that are coherent with the observation f (h, l). Namely, as-
suming a fixed f , we say that a secret h is coherent with o ∈ O under l ∈ ΣL whenever
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f (h, l) = o holds. Two secrets h and r are indistinguishable under l iff f (r, l) = f (h, l).
Note that for every l ∈ ΣL, indistinguishability under l is an equivalence relation on ΣH.
For every o ∈ O, the set of secrets that are coherent with o under l forms an equiva-
lence class of indistinguishability under l. The set of secrets that are coherent with the
attacker’s observation under the attacker’s input is the set of secrets that could possi-
bly have led to this observation; we use this set to represent the attacker’s knowledge
about the secret after an attack step. In this way, a function f : ΣH × ΣL → O gives
rise to a set of partitions P f = {πl | l ∈ ΣL}, where πl is the partition induced by
indistinguishability under l.

In terms of the set of partitions P f , the two phases of an attack step can be described
as follows:

1. In the query phase, the attacker chooses a partition π ∈ P f .

2. In the response phase, the system reveals the block B ⊆ π that contains h.

Conversely, given a set of partitions P , one can easily define a (non-unique) function
f , with P f = P . In this sense, the partition-based and the functional viewpoints are
equivalent. Formalizing f in terms of P f only abstracts from the concrete values that
f takes, which are irrelevant for assessing the information that is revealed by f . For
clarity of presentation, we will subsequently focus on the partition-based viewpoint
and generalize from single attack steps to entire attacks.

Attack Strategies as Trees. To model adaptive attacks, we proceed as follows. We
assume a fixed set of partitions P of ΣH and we use a tree whose vertices are labeled
with subsets of ΣH for capturing the attacker’s decisions with respect to his possible
observations. In this tree, an attack step is represented by a node together with its
children. The label A of the parent node is the set of secrets that are coherent with
the attacker’s observation at this point; hence it represents the basis for the attacker’s
decision. The labels of the children form a partition of that set. We require that this
partition be of the form A∩ P for some π ∈ P . This corresponds to the attacker’s choice
of a query. By observing the system’s response, the attacker learns which successor’s
block actually contains the secret. This node is the starting point for subsequent attack
steps. With this formalization of an attack strategy, an actual attack corresponds to a
path from the root in this tree.

Example 4.5. Let ΣH ={1, 2, 3, 4} and consider the set of partitions P={{{1}, {2, 3, 4}},
{{1, 2}, {3, 4}}, {{1, 2, 3}, {4}}} of ΣH. Suppose the attacker picks {{1, 2}, {3, 4}} as his
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Figure 4.1: An attack strategy

first query. If the system responds {1, 2}, the attacker chooses {{1}, {2, 3, 4}} as his next
query. Otherwise, he chooses {{1, 2, 3}, {4}}. In this way, he can determine any secret
within two steps. The corresponding attack strategy is depicted in Figure 4.1. ♦

Formally, let T = (V, E) be a tree with nodes V and edges E ⊆ V × V. For every
node v ∈ V, we denote the set of its successors as succ(v) = {w | (v, w) ∈ E}. The
height of a tree T is the length of a longest path in T.

Definition 4.1. Let P be a set of partitions of ΣH. An attack strategy against P is a triple
(T, r, λ), where T = (V, E) is a tree, r ∈ V is the root, and λ : V → 2ΣH is a node
labeling with the following properties:

1. λ(r) = ΣH, and

2. for every v ∈ V, there is a π ∈ P with λ(v) ∩ π = {λ(w) | w ∈ succ(v)}.

An attack strategy is of length k if T has height k. An attack is a path (r, . . . , t) from the
root r to a leaf t of T.

Requirement 1 of Definition 4.1 expresses that, a priori, every secret in ΣH is possi-
bly chosen by the honest agent. Requirement 2 expresses that the labels of the children
of each node form a partition of their parent’s label and that this partition is obtained
by intersecting the label with a π ∈ P . A simple consequence of requirements 1 and 2
is that the labels of the leaves of an attack strategy partition the label of the root node.
This leads to the following definition.

Definition 4.2. The partition induced by the attack strategy a = (T, r, λ) is the set {λ(v) |
v is a leaf of T}, which we denote by πa. We define the set of secrets that are coherent
with an attack a = (r, . . . , t) as λ(t).
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Observe that this definition of coherence corresponds to our prior definition con-
sidering attacks (r, t) of length 1: the secrets that are coherent with an observation o
under l form the block λ(t) that the system reveals when queried with πl.

To clearly distinguish between adaptive and non-adaptive attacks, we briefly de-
scribe how the latter can be cast in our model.

4.3.3 Non-adaptive Attack Strategies

An attack strategy is called non-adaptive if the attacker does not have access to the
system’s responses until the end of the attack. Thus, when choosing an input, he cannot
take into account the outcomes of his previous queries. In our model, this corresponds
to the attacker choosing the same partition in all nodes at the same level of the attack
strategy.

Formally, the level of a node v ∈ V in an attack strategy a = (T, r, λ), with T =
(V, E), is the length of the path from the root r to v. A tree is full if all leaves have the
same level.

Definition 4.3. An attack strategy a = (T, r, λ) is non-adaptive iff T is full and for every
level i there is a πi ∈ P such that λ(v) ∩ πi = {λ(w) | w ∈ succ(v)}, for every v of level
i.

Note that we require the tree to be full to exclude observation-dependent termina-
tion of attacks. The structure of non-adaptive attacks is simpler than that of adaptive
attacks and we can give explicit representations of the partitions induced.

Proposition 4.1. Let a be a non-adaptive attack strategy of length k against P . Then we have

πa =
k−1⋂
i=0

πi ,

where πi ∈ P is the partition chosen at level i ∈ {0, . . . , k − 1} of a.

Proof. We prove the assertion by induction on the length k of a = (T, r, λ). If k = 0,
we have πa = λ(r) = ΣH =

⋂
∅. If k > 0, consider the full subtree T′ of height k − 1

of T. We have πa = {λ(w) | w is a leaf of T} =
⋃

v{λ(w) | w ∈ succ(v)}, where v
ranges over the leaves of T′. According to Definition 4.3 and the induction hypothesis,
we conclude πa =

⋃
v λ(v) ∩ πk−1 =

⋂k−2
i=0 πi ∩ πk−1 =

⋂k−1
i=0 πi.

Observe that, since ∩ is commutative, the order of the queries is irrelevant. This is
coherent with the intuitive notion of a non-adaptive attack, as the side-channel infor-
mation is only analyzed when the attack has finished.
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4.3.4 Attack Strategies and RI/RO-Security

We next establish a formal connection between RI/RO-security and attack strategies.
For this, consider a triggered Mealy machine M = (S, ΣH × ΣL, Γ, δ, s0), an equiva-
lence relation RO ⊆ Γ × Γ, and let f = f RO

M be M’s side-channel with respect to RO.
Furthermore, let P f be the set of partitions of ΣH that is induced by f .

Proposition 4.2. If M is R× IdL/RO-secure for an equivalence relation R ⊆ ΣH × ΣH, then
πR v πa for all attack strategies a against P f .

Proof. Choose an arbitrary l ∈ ΣL and arbitrary h1, h2 ∈ ΣH with h1 R h2. M is R ×
IdL/RO-secure, hence f (h1, l) = f (h2, l). That is, h1 and h2 are indistinguishable under
l. In terms of partitions, this implies πR v πl. As l was chosen freely, πR v

⋂
π∈P f

π

follows.
⋂

π∈P f
π v πa holds for every attack strategy a against P f , hence the assertion

follows from the transitivity of v.

Proposition 4.2 implies that an attacker cannot deduce more than the R-equivalence
class of the secret input of a triggered and R× IdL/RO-secure Mealy machine, indepen-
dently of the attack strategy he follows.

Example 4.6. Let M be a triggered Mealy machine with ΣH = {0, 1}n and let Ψ =
{(a, b) ∈ ΣH × ΣH | ‖a‖ = ‖b‖}, where ‖x‖ denotes the Hamming weight of x. If M is
Ψ × IdL/AllL × IdL-secure, then any adaptive attack does not reveal more than the Ψ-
equivalence class of the high input to M, which corresponds to the high input’s Ham-
ming weight. If M is AllH × IdL/AllL × IdL-secure (i.e., NI-secure), then any adaptive
attack does not reveal more than the AllH-equivalence class of the input to M, which
corresponds to no information gain about the secret input. ♦

In untriggered and R× IdL/RO-secure Mealy machines, the R-equivalence class of
every input symbol may be revealed to the observer.

Example 4.7. Consider a Mealy machine M with a single state s0, alphabets ΣH = ΣL =
Γ = {0, 1}, and transitions {(s0, (h, l), h, s0) | h, l ∈ {0, 1}}. Note that M maps every
high input h to the identical low output. However, M is Ψ× IdL/IdΓ-secure, where Ψ is
defined as in Example 4.6. This is due to the fact that the Ψ-equivalence classes of ΣH

are singleton and illustrates that, in an untriggered system, R × IdL/RO-security may
still allow for the flow of arbitrary information to the observer. ♦

Proposition 4.2 shows how the techniques introduced in Chapter 3 can be used to
provide bounds on what an adaptive attacker can learn about the secret input. How-
ever, these bounds hold against attack strategies of arbitrary length and they cannot
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be used to reason about the attacker’s effort (in terms of measurements) to obtain this
information.

In the next section, we will extend our model of attack strategies presented with
measures for their quantitative evaluation. Afterwards, we use this quantitative model
to give bounds on what attackers can possibly achieve within a given number of attack
steps.

4.4 Quantitative Evaluation of Attack Strategies

In Section 4.3, we used the induced partition πa to represent what an attacker learns
about the secret by following an attack strategy a. Intuitively, the attacker obtains more
information (or equivalently, reduces the uncertainty) about the secret as πa is refined.
Information-theoretic entropy measures can be used to express this remaining uncer-
tainty. Focusing on the remaining entropy instead of the attacker’s information gain
provides a concrete, meaningful measure that quantifies the attacker’s effort for the
recovery of the secret by brute-force guessing under the worst-case assumption that he
can actually determine the set of secrets that are coherent with his observations during
the attack. The viewpoints are informally related by the equation initial uncertainty =
information gain + remaining uncertainty, which we will make explicit below.

4.4.1 Measures of Uncertainty

We now introduce three entropy measures, which correspond to different notions of re-
sistance against brute-force guessing. Presenting these different measures serves two
purposes. First, it accommodates the fact that different types of guesses and differ-
ent notions of success for brute-force guessing correspond to partially incomparable
notions of entropy [54, 18, 66]. Second, it demonstrates how the possibilistic model
presented in Section 4.3 can serve as a basis for a variety of probabilistic extensions.

In the following, assume a probability measure p is given on ΣH and is known to
the attacker. For a random variable X : ΣH → X with range X , we define pX : X →
R as pX(x) = ∑h∈X−1(x) p(h), which in the literature is often denoted by p(X = x).
For a partition π of ΣH, there are two variables of particular interest. The first is the
random variable U that models the random choice of a secret in ΣH according to p (i.e.,
U = idΣH , where id is the identity function). The second is the random variable VP that
represents the choice of the enclosing block (i.e., Vπ : ΣH → π, where h ∈ Vπ(h)). For
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an attack strategy a, we abbreviate Vπa by Va.

Shannon Entropy. The (Shannon) entropy [81] of a random variable X : ΣH → X is
defined as

H(X) = − ∑
x∈X

pX(x) log2 pX(x) .

The entropy is a lower bound for the average number of bits required to represent the
results of independent repetitions of the experiment associated with X. Thus, in terms
of guessing, the entropy H(X) is a lower bound for the average number of binary
questions that need to be asked to determine X’s value [18].

Given another random variable Y : ΣH → Y , one denotes by H(X|Y = y) the en-
tropy of X given Y = y, that is, with respect to the distribution pX|Y=y. The conditional
entropy H(X|Y) of X given Y is defined as the expected value of H(X|Y = y) over all
y ∈ Y , namely,

H(X|Y) = ∑
y∈Y

pY(y)H(X|Y = y) .

Entropy and conditional entropy are related by the equation H(XY) = H(Y)+ H(X|Y),
where XY is the random variable defined by XY(x) = (X(x), Y(x)).

Consider now an attack strategy a and the corresponding variables U and Va. H(U)
is the attacker’s initial uncertainty about the secret and H(U|Va = B) is the attacker’s
remaining uncertainty about the secret after learning the secret’s enclosing block B ∈
πa. H(U|Va) is the attacker’s expected remaining uncertainty about the secret after
performing an attack with strategy a. As the value of Va is determined by that of U,
we have H(UVa) = H(U). The equation H(U) = H(Va) + H(U|Va) is the formal
counterpart of the informal equation given at the start of this section.

Guessing Entropy. The guessing entropy of a random variable X is the average num-
ber of questions of the kind “does X = x hold” that must be asked to guess X’s value
correctly [54].

As we assume p to be public, the optimal procedure is to try each of the possible
values in order of their decreasing probabilities. W.l.o.g., let X be indexed such that
pX(xi) ≥ pX(xj), whenever i ≤ j. Then the guessing entropy G(X) of X is defined
as G(X) = ∑1≤i≤|X | i pX(xi). Analogously to the conditional Shannon entropy, the
conditional guessing entropy G(X|Y) is defined as

G(X|Y) = ∑
y∈Y

pY(y)G(X|Y = y) .
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G(X|Y) represents the expected number of guesses needed to determine X when the
value of Y is already known.

Hence, G(U|Va) is a lower bound on the expected number of off-line guesses that an
attacker must still perform to recover the secret after having carried out a side-channel
attack with strategy a.

Marginal Guesswork. For a fixed α ∈ [0, 1], the marginal guesswork of a random
variable X quantifies the number of questions of the kind “does X = x hold” that must
be asked until X’s value is correctly determined with a chance of success given by α

[66].

Again, w.l.o.g. let X be indexed such that pX(xi) ≥ pX(xj), whenever i ≤ j. Then
the (α)-marginal guesswork of X is defined as

Wα(X) = min{j | ∑
1≤i≤j

pX(xi) ≥ α} .

We define the conditional marginal guesswork Wα(X|Y) analogously to the conditional
entropy. As before, Wα(U|Va) is a lower bound on the expected number of guesses that
an attacker needs to perform in order to determine the secret with a success probability
of more than α after having carried out a side-channel attack with strategy a.

Uniform Distributions. If p is uniformly distributed, simple explicit formulae for the
entropy measures presented so far can be derived.

Proposition 4.3. Let a be an attack strategy with πa = {B1, . . . , Br}, |Bi| = ni, and |ΣH | =
n. If p is uniformly distributed, then

1. H(U|Va) = 1
n ∑r

i=1 ni log ni,

2. G(U|Va) = 1
2n ∑r

i=1 n2
i + 1

2 , and

3. Wα(U|Va) = 1
n ∑r

i=1 nidαnie.

Proof. 1. The entropy of a uniformly distributed random variable with finite range
X is given by log2 |X | (see, e.g. [6]). Consequently, H(U|Va = Bi) = log2 ni and
H(U|Va) = ∑r

i=1
ni
n H(U|Va = Bi) = 1

n ∑r
i=1 ni log ni.

2. We have G(U|Va) = ∑r
i=1

ni
n G(U|Va = Bi)= ∑r

i=1
ni
n ∑ni

j=1 j 1
ni

= 1
n ∑r

i=1
(ni+1)ni

2 =
1

2n ∑r
i=1 n2

i +1
2 .
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3. The assertion follows from Wα(U|Va) = ∑r
i=1

ni
n Wα(U|Va = Bi) and the observa-

tion that Wα(U|Va = Bi) = dαnie. �

While there are clear connections between the entropy measures in the uniform
case, there is no general relationship between them for arbitrary probability distribu-
tions. Massey [54] shows that lower bounds can be given for G(X) in terms of H(X),
but that there are no general upper bounds for G(X) in terms of H(X). Pliam [66]
shows that there can be no general inequality between marginal guesswork and Shan-
non entropy.

Worst-Case Entropy Measures. All entropy measures presented so far are average-
case measures. We use the example of guessing entropy to illustrate this and to show
how they can be adapted to accommodate stronger, worst-case guarantees.

The conditional guessing entropy G(U|Va) weights each value G(U|Va = B) by
the probability that a randomly chosen secret from ΣH is contained in B ∈ πa. As
G(U|Va = B) measures the difficulty of guessing a secret if its enclosing block B is
known, G(U|Va) quantifies whether secrets are, on the average, hard to guess after an
attack with strategy a.

Our model also accommodates entropy measures for a worst-case analysis, in the
sense that they quantify the guessing effort for the secrets in ΣH that are easiest to
guess. To capture this, we define the minimal guessing entropy Ĝ(U|Va) of U given Va as
Ĝ(U|Va) = min{G(U|Va = B) | B ∈ πa}. The value Ĝ(U|Va) is a lower bound on the
expected guessing effort for the weakest secrets in ΣH.

The following example illustrates the difference between worst-case and average-
case entropy measures.

Example 4.8. Consider a set of uniformly distributed secrets ΣH = {1, . . . , 10} and the
partitions π1 = {{1}, {2, . . . , 10}} and π2 = {{1}, . . . , {10}}. We have Ĝ(U|Vπ) = 1,
which reflects that there exists a secret that is trivial to guess with knowledge of its
enclosing block in π1. The conditional entropy yields G(U|Vπ1) = 4.6, which reflects
that, on the average, 4.6 guesses are still necessary to recover the secret. Note that
Ĝ(U|Vπ1) = Ĝ(U|Vπ2), and that G(U|Vπ2) = 1 < G(U|Vπ1). That is, only the average-
case measure can distinguish between the partitions π1 and π2. ♦

Ultimately, it will depend on the application whether worst-case or average-case
measures are appropriate. As Example 4.8 illustrates, average-case measures can better
distinguish between partitions, and they might be preferable when comparing imple-
mentations for their vulnerability to side-channel attacks. Worst-case measures are
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preferable when developing countermeasures against side-channel attacks. To this
end, let m be a lower bound for the number of brute-force guesses that are consid-
ered to be infeasible for an attacker. The number n∗ = max{n | ΦĜ(n) ≥ m} can be
used as a bound for the number of queries that the system can safely answer before
the key should be changed. In the remainder of this chapter, we will focus solely on
average-case measures, for the reason that they are better suited for distinguishing be-
tween partitions. All of our technical results, however, carry over to the worst-case
versions with only minor modifications.

Given entropy measures for evaluating attack strategies, we can now define the
optimality of attacks and give bounds for what an attacker can, in principle, achieve
by performing a side-channel attack.

4.4.2 Measuring the Resistance to Optimal Attacks

There is a trade-off between the number of attack steps and the attacker’s uncertainty
about the secret. More side-channel measurements imply less uncertainty, which en-
tails fewer guesses. Below, we give a formal account of this for the entropy measures
introduced. We then define a function ΦE that is parameterized by an entropy measure
E ∈ {H, G, Wα} and whose value is the expected remaining uncertainty about the se-
cret after n steps of an optimal attack strategy. As we will show, ΦE can be used for
assessing an implementation’s vulnerability to side-channel attacks.

For assessing the vulnerability of an implementation to active side-channel attacks,
we make the worst-case assumption that the attacker proceeds optimally. A strategy
is optimal if an attacker who follows it can expect to have less uncertainty about the
secret than with any other strategy of the same length.

Definition 4.4. Let a = (T, r, λ) be an attack strategy of length n against a set of parti-
tions P of ΣH. We call a optimal with respect to E ∈ {H, G, Wα} iff E(U|Va) ≤ E(U|Vb)
holds for all attack strategies b against P of length n.

Next, we define the expected remaining uncertainty as a function of the number of
attack steps taken by an optimal attacker. In this way, we relate two important aspects
of a system’s vulnerability; namely, how much information an attacker can obtain and
how many queries he needs for this.
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Definition 4.5. Let P be a set of partitions of ΣH and let E ∈ {H, G, Wα}. We define the
resistance ΦE to an attack against P by

ΦE (n) = E(U|Va) ,

where a is an optimal attack of length n with respect to E .

We now formally justify the intuition that more attack steps lead to less uncer-
tainty about the secret. In particular, we prove that ΦE decreases monotonously. As
notation, we say that an attack strategy a = (T, r, λ) is the prefix of an attack strategy
b = (T′, r′, λ) if T is a subtree of T′, r = r′, and if λ and λ′ coincide on T. We denote
this by a ≤ b.

Proposition 4.4. Let E ∈ {H, G, Wα} be an entropy measure and let a and b be attack strate-
gies.

1. a ≤ b implies E(U|Va) ≥ E(U|Vb).

2. For all n ∈ N, we have ΦE (n) ≥ ΦE (n + 1).

Proof. We prove 4.4.1 for the example of the guessing entropy G. Consider a partition
π of ΣH. It is easy to see that G(U|Vπ) = ∑B∈π ∑|B|

i=1 i pU(xB
i ), where the elements xB of

block B are indexed in order of their decreasing probabilities. Observe that the prob-
abilities in the sum do not depend on π, but that the indices of the elements decrease
as π is refined. As a ≤ b implies πa w πb, 4.4.1 follows. Assertion 4.4.2 is a simple
consequence of 4.4.1.

4.5 Automated Vulnerability Analysis

Below, we first show that ΦE is computable for E ∈ {H, G, Wα} and we give algorithms
and complexity bounds. The algorithms require exponential time and cannot be used
for direct computation. We then present a greedy heuristic for approximating ΦE to
address this problem.

Throughout this section, let P be a set of partitions of ΣH and let r ≥ 2 be the
maximum number of blocks of a partition in P , i.e., r = max{|π| | π ∈ P}. We
assume that partitions are represented using standard disjoint-set data structures with
operations UNION and FIND (see, e.g., [26]). Furthermore, we assume that O and ΣH

are ordered sets for which two elements can be compared in O(1). It is not difficult to
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see that, given a function f : ΣH × ΣL → O, one can build disjoint-set data structures
for P f in time O(|ΣL| |ΣH | log |ΣH |), under the assumption that f can be computed in
time O(1).

4.5.1 Computing ΦE

We begin by establishing an upper bound on the number of attack strategies of a given
length; we will use this later, when we compute ΦE by enumerating strategies.

Lemma 4.1. The number of attack strategies of length n against P is bounded from above by
|ΣL|

rn−1
r−1 . Furthermore, every attack strategy of length n can be encoded by an rn-tuple over

{1, . . . , |ΣL|}.

Proof. A straightforward inductive argument shows that the partition induced by an
attack strategy of length n has at most rn blocks. We prove the claimed bound by
induction on n. For n = 0, the bound is clearly valid. Assume now that there are at
most |ΣL|

rn−1
r−1 attack strategies of length n. Each such attack strategy can be extended to

an attack strategy of length n + 1 by assigning one of the |ΣL| partitions to every block
of the induced partition. There are at most rn blocks, so there are at most |ΣL|r

n
possible

extensions. In total, there are at most |ΣL|
rn−1
r−1 · |ΣL|r

n
= |ΣL|

rn+1−1
r−1 attack strategies of

length n + 1, which concludes our inductive proof. Now observe that the choices of
partitions at level j can be encoded by a rj-tuple (ij,1, . . . , ij,rj) over {1, . . . , |ΣL|}. As

∑n−1
j=0 rj = rn−1

r−1 ≤ rn, the entire strategy can be encoded by a rn-tuple.

Computing ΦE (n) requires identifying an optimal attack of length n. We may com-
pute ΦE (n) directly by brute force: enumerate all attack strategies and compute E for
each induced partition. This algorithm yields an upper bound for the complexity of
computing ΦE .

Theorem 4.1. The value ΦE (n) can be computed in time

O(n |ΣL|r
n
|ΣH | log |ΣH |)

under the assumption that E can be computed in time O(|ΣH |).

Proof. Let (i0; . . . ; in−1,1, . . . , in−1,rn−1), with 1 ≤ ij ≤ |ΣL|, represent an attack strategy
a of length n, where the choices of partitions at each level are encoded as in the proof
of Lemma 4.1 and where the individual levels are separated by “;”. Iterate over all
h ∈ ΣH. For each h, call FIND(h) on the representation of partition i0 to obtain the
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index j of h’s enclosing block in πi0 . Use FIND(h) to obtain h’s block in πi1,j . Repeat this
procedure until h’s block in the partition at depth n is determined. Save these n block
indices in a list and store it in an array I at index h. Performing this procedure for all
h ∈ ΣH has a time complexity of O(n |ΣH | log |ΣH |). Two secrets are in the same block
of the partition induced by a if and only if their corresponding index lists coincide. To
obtain the equivalence classes, sort ΣH according to the lexicographic order given by
the lists in I in O(n |ΣH | log |ΣH |), which dominates the running time for evaluating E
on the resulting partition. Performing this procedure for all attack strategies yields an
overall running time of O(n |ΣL|r

n |ΣH | log |ΣH |).

4.5.2 Approximating ΦE

Brute-force computation of ΦE requires time doubly exponential in the number of at-
tack steps and is hence infeasible even for small parameter sizes. To address this prob-
lem, we present a more efficient greedy heuristic and describe properties that help us
approximate ΦE .

A Greedy Heuristic. Consider an attacker who has performed a number of attack
steps against a set of partitions P and has narrowed down the set of possible secrets
to a subset A ⊆ ΣH. A greedy choice for the subsequent query is a partition π ∈ P
that minimizes the remaining entropy of A∩π. To formalize this, consider the random
variable UA = idA that models the random choice of a secret according to the condi-
tional probability distribution p(·|A), and the random variable Vπ∩A : A → π ∩ A that
models the choice of the enclosing block in π ∩ A.

Definition 4.6. An attack strategy a = (T, r, λ) against P , with T = (V, E), is greedy
with respect to E ∈ {H, G, Wα} iff for every v ∈ V and all π1, π2 ∈ P , {λ(w) | w ∈
succ(v)} = λ(v) ∩ π1 implies E(UA|Vπ1∩A) ≤ E(UA|Vπ2∩A).

We next define an approximation Φ̂E of ΦE based on the partition induced by a
greedy strategy. Note that greedy strategies are not unique and that the induced parti-
tions of two greedy strategies of the same length need not even have the same entropy.
Hence to define an approximation Φ̂E , we assume a fixed greedy strategy a of sufficient
length k whose underlying tree is full. For all n ≤ k, we denote the full prefix of a with
length n by a(n). We define Φ̂a

E as Φ̂a
E (n) = E(U|Va(n)), for all n ≤ k. We only use a as

an artifact to consistently resolve the nondeterminism of greedy strategies of different
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lengths. From now on, we assume that a greedy strategy a of sufficient length is fixed
and write Φ̂E instead of Φ̂a

E .

Theorem 4.2. The value Φ̂E (n) can be computed in time

O(n r |ΣL| |ΣH |2) ,

under the assumption that E can be computed in time O(|ΣH |).

Proof. For computing intersections of partitions, we assume a list representation of the
blocks of every partition, in which every list is ordered with respect to the order on ΣH.
This can be extracted from the given disjoint-set data structures in time O(|ΣL| |ΣH |2).
For a fixed subset of ΣH that is represented as an ordered list, a greedy refinement
can then be computed by intersecting it with each of the (at most r) blocks of each of
the |ΣL| partitions. As the set representations are ordered, this can be done in time
O(r |ΣL| |ΣH |). As the number of blocks in every partition of ΣH is bounded by |ΣH |,
computing n greedy steps can be done in time O(n r |ΣL| |ΣH |2).

We next state several inequalities between the values of ΦE and Φ̂E , which we will
use later, when interpreting our experimental results.

Relating ΦE and Φ̂E . The definition of a greedy strategy begs the question of whether
greedy strategies are also optimal. The following example illustrates that this is not the
case in general.

Example 4.9. Consider the set of partitions P = {{{1}, {2}, {3, 4, 5}}, {{1}, {2, 3, 4},
{5}}, {{1, 2, 3}, {4, 5}}}, a uniform distribution, and the guessing entropy as a mea-
sure. A greedy strategy refines ΣH to {{1}, {2}, {3, 4, 5}} in a first step, and to {{1}, {2},
{3, 4}, {5}} in a second step. Optimally, however, one would first pick {{1, 2, 3}, {4, 5}}
and refine it to {{1}, {2}, {3}, {4}, {5}} in a second step. ♦

Although Example 4.9 implies that Φ̂E and ΦE do not coincide in general, we can
establish the following relationships.

Proposition 4.5. For E ∈ {H, G, Wα}, we have

1. Φ̂E (1) = ΦE (1),

2. for all n ∈ N, Φ̂E (n) ≥ ΦE (n), and

3. if Φ̂E (n) = Φ̂E (n + 1), then we have ΦE (n′) = Φ̂E (n′) = Φ̂E (n), for all n′ ≥ n.
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greedy :: [Part k] -> Int -> [k] -> Part k

greedy f n secs = app n (greedystep f) [secs]

greedystep :: [Part k] -> Part k -> Part k

greedystep f pt = concat (map refine pt)

where refine b = minimumBy order (restrict b f)

Figure 4.2: Computing Φ̂E in HASKELL

Proof. Assertions 1 and 2 follow directly from Definitions 4.4 and 4.6. For Assertion
3, let a be the greedy strategy underlying the definition of Φ̂E . Φ̂E (n) = Φ̂E (n + 1)
implies that πa(n) cannot be refined by intersection with a partition from P , hence
πa(n) =

⋂
π∈P π, which refines every partition that can be induced by intersection of

elements from P .

We will make use of Proposition 4.5 in our experiments. 4.5.2 shows that an im-
plementation that is shown to be vulnerable when analyzed with Φ̂E must also be vul-
nerable with respect to ΦE . 4.5.3 implies that if Φ̂E levels off, then so does ΦE , and their
values coincide. Hence we do not need to compute ΦE for arguments beyond this point.

4.5.3 An Implementation

For our experiments we have implemented Φ̂E in HASKELL [14]. We have chosen sim-
plicity over efficiency, forgoing sophisticated data structures and optimizations. In-
stead, we represent sets as lists and partitions as lists of lists and recursively compute
greedy refinements of partitions. The core routines are given in Figure 4.2.

The function greedy takes as arguments a list secs of secrets, a list of partitions f

of the list secs, and an integer n. It refines the trivial partition [secs] by n-fold appli-
cation of a greedy refinement step through app. The refinement step is implemented
in greedystep, where each partition pt is refined by greedily refining each individual
block. This is done in refine, which maps each block to its partition with minimal rank
among those obtained by restricting the elements of f to b with restrict. The rank of
a partition is given by the function order, which can be instantiated to E ∈ {H, G, Wα}.
Applying order to the result of greedy yields Φ̂E . The simplicity of this implementation
shows that the automation of our techniques is indeed straightforward.
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4.6 Summary

We have presented a quantitative model for reasoning about adaptive side-channel
attacks. It allows us to express an attacker’s remaining uncertainty about a secret as
a function of the number of his side-channel measurements. This function provides a
relevant metric for assessing a system’s vulnerability to side-channel attacks.

Our model builds on explicit representations of side-channels. These representa-
tions can be given by hardware simulation environments and they can also derived
from Mealy machine models of hardware. This allows us to give an interpretation of
RI/RO-security in terms of our quantitative model.

We report on experimental results with our prototype in Chapter 6, where we show
that our results can be practically used for giving information-theoretic bounds for the
side-channel leakage of cryptographic algorithms in the presence of adaptive attackers.



Chapter 5

Eliminating Side-Channels

5.1 Introduction

5.1.1 Security Type Systems and Transformations

Security type systems are an attractive approach for automating information flow anal-
yses of programs in high-level programming languages: security type-checking is
static, modular and allows one to syntactically determine if a program is secure with-
out the need to perform a direct analysis of the transition system induced by a program
with large or infinite memory.

If type-checking succeeds, then the program is secure. If type-checking fails, the
program might be insecure and should not be run. The correction of the program can
be a tedious and error-prone process and is usually left to the programmer. Trans-
forming type systems offer automated support for this task: during type-checking,
the program is modified with the objective of removing potential information leaks.
Similarly to non-transforming type systems, transforming type systems produce false
negatives. However, by removing certain information leaks, they can be successfully
applied to a larger class of programs.

A program transformation to remove information leaks must modify a program in
such a way that the output program’s observable behavior does not depend on any
secret data. Information leaks that arise through branching decisions that depend on
secret data are particularly difficult to avoid. For securing a conditional with a secret
guard, for example, one must ensure that both branches are observationally equivalent;
then an observer cannot deduce which branch was taken and the confidentiality of the
guard is preserved. In this chapter, we develop a novel transformation to secure such

53
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conditionals.
The first transformational approach for securing conditionals with secret guards

is the cross-copying technique from [4]. The technique was originally proposed as a
method to transform out timing leaks in sequential program, but it has been shown that
it is also suitable for eliminating scheduling leaks in multithreaded programs [75]. The
intuition behind this is that, after the transformation, both branches of a conditional
with a secret guard need the same amount of time slices to be executed. In this way,
the scheduler’s behavior is decoupled from the secret guard.

The cross-copying technique works as follows. For securing a conditional

if h then C1 else C2 ,

where h is a variable of domain H, one tries to construct programs S1 and S2 with the
properties that (1) Si is observationally equivalent to Ci, for i ∈ {1, 2}, and (2) S1 and
S2 do not contain assignments. If S1 and S2 can be constructed with (1) and (2), the
conditional is transformed into

if h then C1; S2 else S1; C2 .

As Ci is observationally equivalent to Si, the observer cannot distinguish between the
execution of C1; S2 and S1; C2 and, hence, the result of the transformation is a secure
program. As S1 and S2 do not change the memory, the program’s semantics is only
slightly modified by the transformation.

Example 5.1. The cross-copying technique transforms the program

if h then skip; h1 := 1 else h2 := 2

into the program

if h then skip; h1 := 1; skip else skip; skip; h2 := 2 .

For this, note that for C1 = skip; h1 := 1 and C2 = h2 := 2, and for an observer who
cannot see the values of the variables h1, h2, the programs S1 = skip; skip and S2 = skip

satisfy properties (1) and (2). ♦

The cross-copying technique is intuitive and simple, but it solves the problem of
transforming a program secure only partially. Its applicability is limited by the fact
that S1 and S2 with (1) and (2) can only be constructed if C1 and C2 do not contain
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assignments to low variables. As a consequence, the cross-copying technique is not
applicable for securing the thread if h then skip; l := 0 else l := 0 from Example 1.2,
where l is a variable of domain L. Furthermore, the transformation may lead to an
unacceptable blow-up of the program’s running time. Finally, as we will explain later,
it is not directly applicable for enforcing multi-level security policies.

5.1.2 Our Approach

In this chapter, we develop a novel approach for achieving the observational equiv-
alence of the branches of a conditional, which addresses the aforementioned short-
comings of the cross-copying technique. We use this approach to improve an existing
transforming type system for programs in ~Com.

Main Idea. We define a partial equivalence relation l on program terms to syntac-
tically approximate the notion of observational equivalence u to be achieved in the
sense that C1 l C2 implies C1 u C2. For securing a conditional if h then C1 else C2,
where h is a variable of domain H, we proceed in three steps:

1. we introduce meta-variables as subterms into C1 and C2, yielding the lifted pro-
grams C1 and C2,

2. we find a substitution σ of meta-variables with program terms such that σC1 l

σC2 holds, and

3. we remove remaining meta-variables from σCi, for i ∈ {1, 2}, and return the
corrected program if h then σC1 else σC2.

That is, we reduce the problem of making the branches of a program observationally
equivalent to an (equational) unification problem. This seems a natural approach to
solving the constraints given by the requirement C1 u C2.

Example 5.2. Consider again the program

if h then skip; l := 0 else l := 0 ,

for which the cross-copying technique fails. By inserting meta-variables αi at suitable
positions, we obtain the lifted branches skip; α1; l := 0; α2 and α3; l := 0; α4. If the sub-
stitution σ = {α1\ε, α2\ε, α3\skip, α4\ε} (here ε denotes the neutral element of the se-
quential composition operator) is applied to the lifted branches, both yield skip; l := 0.
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A unification-based transformation would hence return

if h then skip; l := 0 else skip; l := 0 ,

which is a secure program. ♦

While this approach is, in principle, applicable to a variety of notions of observa-
tional equivalence u, we will investigate in detail a concrete instance for eliminating
scheduling leaks in MWL programs. Our notion of observational equivalence will be
the strong low-bisimulation uL introduced in Section 2.4.

Outline. In the remainder of this chapter, we show how the strong low-bisimulation
uL (see Chapter 2.4) can be approximated by a relation lL⊆ ~Com × ~Com and we
present a calculus for inserting meta-variables into programs in ~Com. We show that the
problem of finding substitutions for this instance can be reduced to a well-known uni-
fication problem (AC1 unification with free constructors [40]), allowing existing unifi-
cation algorithms to be employed for computing unifiers. We sketch that these algo-
rithms do not yield an optimal solution, and we also propose a unification algorithm
that is tailored to the specific structure of the unification problems that arise during the
transformation. Finally, we integrate our approach into an existing transforming type
system and prove its completeness in the sense that it successfully eliminates every
scheduling side-channel that can be removed by insertion of dummy operations.

Advantages. In comparison to the state-of-the art transforming type system for achiev-
ing strong security [75], the main advantages of our transforming type system are the
following: our transforming type system can correct a class of programs that cannot
be corrected by the original type system; our transformation returns programs that are
faster and often substantially smaller in size; our transformation can be applied in the
context of security policies with more than two levels. Besides these technical advan-
tages, unification yields a natural perspective on the problem of making two programs
observationally equivalent.

5.2 Observational Equivalence by Unification

5.2.1 Objectives of the Transformation

The main objective of our program transformation is to achieve the observational equiv-
alence C1 uL C2 of given programs C1 and C2. To realize this, the programs’ behavior
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might need to be changed in some way. Without any restrictions on the possible se-
mantic changes, achieving observational equivalence is trivial: both C1 and C2 can
simply be transformed to skip. We will use a weak bisimulation ' to constrain the pos-
sible modifications to C1 and C2, and we require that the original program Ci and the
transformed program C′

i satisfy Ci ' C′
i , for i ∈ {1, 2}.

Hence, the objectives of our program transformation can be expressed by the two
equivalence relations, uL and ', where uL models the observational equivalence to be
achieved and where ' models the behavior to be preserved. It can be guaranteed that
these objectives are met by unification. For achieving observational equivalence by
unification under lL, it must be ensured that C1 lL C2 implies C1 uL C2. For achiev-
ing the preservation of behavior, the liftings Ci of Ci and the range of the admissible
substitutions σ must be chosen in such a way that Ci ' σCi holds, for i ∈ {1, 2}.

Below, we introduce suitable syntactic approximations for observational equiva-
lence, and substitutions and liftings for achieving weak bisimulation equivalence.

5.2.2 Approximating Observational Equivalence

The relation lL ⊆ ~Com × ~Com defined by the rules in Figure 5.1 provides a syntactic
approximation of the strong low bisimulation relation. We will illustrate this with a
few exemplary rules and give some necessary definitions, before formally stating and
proving the assertion in Theorem 5.1.

An arithmetic expression Exp has the security domain L (denoted by Exp : L) if
all variables in Exp have domain L. Otherwise, it has security domain H (denoted by
Exp : H). We classify boolean expressions analogously. Hence, values of expressions
with domain H may depend on secrets while values of expressions with domain L can
only depend on public data. In the following, we use variable names h and l to denote
variables of domain H and L, respectively.

The relation lL provides a syntactic approximation of the strong low bisimulation
relation: the rules [SHA1] and [SHA2] express that an assignment to a high variable
is invisible to the observer, i.e., that it cannot be distinguished from a skip. However,
l := h is not lL-related to itself because the precondition of [LA], the only rule in Fig-
ure 5.1 applicable to assignments to low variables, rules out that high variables occur
on the right-hand side of the assignment. This meets our intuition, as the execution
of an assignment l := h clearly violates the policy H 6 L. If the branches of a high
conditional relate (rules [SHCond1] and [SHCond2]), then this conditional is related to
the sequential composition of a skip and a program that is related to the branches. The
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skip lL skip
[Skp]

Id : L Exp : L Exp′ : L Exp ≡ Exp′

Id := Exp lL Id := Exp′
[LA]

Id : H Id′ : H
Id := Exp lL Id′ := Exp′

[HA] Id : H
skip lL Id := Exp

[SHA1]
Id : H

Id := Exp lL skip
[SHA2]

C1 lL C′
1 C2 lL C′

2

C1; C2 lL C′
1; C′

2
[Seq]

C1 lL C′
1, . . . , Cn lL C′

n

〈C1, . . . , Cn〉 lL 〈C′
1, . . . , C′

n〉
[Par]

C lL C′ V lL V ′

fork(CV) lL fork(C′V ′)
[Frk]

B, B′ : L B ≡ B′ C lL C′

while B do C lL while B′ do C′ [Whl]

B, B′ : L B ≡ B′ C1 lL C′
1 C2 lL C′

2

if B then C1 else C2 lL if B′ then C′
1 else C′

2
[LCond]

B, B′ : H C1 lL C′
1 C1 lL C′

2 C1 lL C2

if B then C1 else C2 lL if B′ then C′
1 else C′

2
[HCond]

B′ : H C1 lL C′
1 C1 lL C′

2

skip; C1 lL if B′ then C′
1 else C′

2
[SHCond1]

B : H C1 lL C′
1 C2 lL C′

1

if B then C1 else C2 lL skip; C′
1

[SHCond2]

Id : H B′ : H C1 lL C′
1 C1 lL C′

2

Id := Exp; C1 lL if B′ then C′
1 else C′

2
[HAHCond1]

Id′ : H B : H C1 lL C′
1 C2 lL C′

1

if B then C1 else C2 lL Id′ := Exp′; C′
1

[HAHCond2]

Figure 5.1: A syntactic approximation of observational equivalence

rule models that the execution of the branches cannot be distinguished and that the
evaluation of the guard looks like a skip to a low observer. Loops with high guards are
considered insecure. Finally, only loops with low guards relate in lL (see rule [Whl]).
As the following theorem shows, lL approximates uL as required.

Theorem 5.1. If V lL V ′ is derivable for V, V ′ ∈ ~Com, then V uL V ′ holds.

The proof relies on two auxiliary lemmas and proceeds by induction on the num-
ber of rule applications in the derivation of V lL V ′. It is given in full detail in Ap-
pendix A.1.

It is not difficult to see that lL is a partial equivalence relation, i.e. it is transitive
and symmetric, but not reflexive. Nevertheless, lL is an equivalence relation, even a
congruence relation, if one restricts programs to the language Slice, which we define,
following [75], as the largest sub-language of Com without assignments of high expres-
sions to low variables, assignments to high variables, and loops or conditionals with



5.2. OBSERVATIONAL EQUIVALENCE BY UNIFICATION 59

high guards. Formally, Slice is given by the grammar

S ::= skip | IdL := ExpL | S1; S2 | if BL then S1 else S2 | while BL do S | fork(SV) ,

where S, S1, S2 denote programs in Slice, and where IdL, ExpL and BL range over vari-
able identifiers and (boolean) expressions of domain L. The sub-language Slice pro-
vides the context in which we will apply unification.

5.2.3 Liftings, Substitutions, and Preservation of Behavior

Liftings We insert meta-variables from a set V = {α1, α2, . . . } into a program C ∈
Com by sequential composition with the subterms of C. The set ComV of programs
with meta-variables is defined by

C ::= skip | Id := Exp | C1; C2 | C; X | X; C

if B then C1 else C2 | while B do C | fork(CV) ,

where the placeholder X ranges over V . The set of all command vectors with meta-
variables is ~ComV =

⋃
n∈N Comn

V . Note that the ground programs in ~ComV , i.e., those
without meta-variables, are exactly the programs in ~Com. The operational semantics
for ground programs remains unchanged, whereas programs in ~ComV are not meant
to be executed. Along the same lines, we define the sets SliceV and ~SliceV , respectively,
by inserting meta-variables into commands in Slice, and vectors thereof.

Substitutions Meta-variables may be substituted with programs, meta-variables, or
the special symbol ε, which acts as the neutral element of the sequential composition
operator (“;”), i.e. ε; C = C and C; ε = C. Note that skip is not a neutral element of (“;”)
with respect to lL, as skip requires a computation step. When talking about programs
in ComV under a given substitution, we implicitly assume that these equations have
been applied (from left to right) to eliminate the symbol ε from the program. More-
over, we view sequential composition as an associative operator and implicitly identify
programs that differ only in the use of parentheses for sequential composition. That is,
C1; (C2; C3) and (C1; C2); C3 denote the same program.

Definition 5.1. A mapping σ : V → ({ε} ∪ V ∪ ComV ) is a substitution if its domain
dom(σ) = {α ∈ V | σ(α) 6= α} is finite. The range of σ is defined as the set ran(σ) =
σ(dom(σ)). We denote substitutions σ with dom(σ) = {α1, . . . , αn} and σ(αi) = Ci, for
i ∈ {1, . . . , n}, as sets of assignments σ = {α1\C1, α2\C2, . . . , αn\Cn}. A substitution
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mapping each meta-variable in a program V to {ε} ∪ Com is a ground substitution of
V. A substitution π mapping all meta-variables in V to ε is a projection of V. Given a
program V in ~Com, we call every program V ′ in ~ComV with πV ′ = V a lifting of V.

As previously explained, the lifting of a program forms the basis for our transfor-
mation by unification.

Example 5.3. The program if h then (α1; skip; α2; l := 1) else (α3; l := 1) is a lifting of the
program if h then (skip; l := 1) else l := 1. ♦

Preservation of Behavior We introduce an equivalence relation ' to constrain the
modifications caused by the transformation. Intuitively, this relationship requires a
transformed program to be a slowed-down version of the original program.

Definition 5.2. The weak possibilistic bisimulation ' is the union of all symmetric rela-
tions R on command vectors, such that whenever V R V ′, then for all memories ν, µ

and all thread pools W, there is a thread pool W ′, such that

〈|V, ν|〉 _ 〈|W, µ|〉 =⇒ (〈|V ′, ν|〉 _∗ 〈|W ′, µ|〉 ∧ WRW ′)
∧V = 〈〉 =⇒ 〈|V ′, ν|〉 _∗ 〈|〈〉, ν|〉 .

Here, _∗ denotes the reflexive and transitive closure of the relation _.

The requirement that the transformed program must be '-related to the original
program is stronger than the requirement in [75]. There, it is only required that the
original program can simulate the transformed program. One advantage of our more
restrictive choice is that a transformation cannot introduce nontermination.

In the remainder of this chapter, we will focus on substitutions with a restricted
range, namely those that map meta-variables to (possibly empty) sequential composi-
tions of meta-variables and skips.

Definition 5.3. A substitution with range {ε} ∪ StutV is called preserving, where StutV
is defined by

C ::= X | skip | C1; C2 ,

where the Ci range over StutV and X ranges over meta-variables in V .

The term preserving substitution is justified by the fact that such substitutions pre-
serve a given program’s semantics as specified in Definition 5.2.
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Theorem 5.2 (Preservation of Behavior).

1. For all preserving substitutions σ, ρ that are ground for V ∈ ~ComV , we have σ(V) '
ρ(V).

2. For each lifting V ′ of a ground program V ∈ ~Com and each preserving substitution σ

with σ(V ′) ground, we have σ(V ′) ' V.

The proof of Theorem 5.2 is given in Appendix A.2.

5.2.4 Unification of Programs.

The problem of finding a substitution that relates the branches of conditionals with
high guards by the relation lL can be viewed as the problem of finding a unifier for
the branches under lL. To this end, we lift the relation lL⊆ ~Com× ~Com to a relation
on ~ComV that we also denote by lL.

Definition 5.4. For V1, V2 ∈ ~ComV , we define V1 lL V2 iff σV1 lL σV2 holds for each
preserving substitution σ that is ground for V1 and V2.

Definition 5.5. A lL-unification problem ∆ is a finite set of statements of the form
Vil?

LV ′
i , i.e.

∆ = {V0l
?
LV ′

0, . . . , Vnl?
LV ′

n}

with Vi, V ′
i ∈ ~ComV for all i ∈ {0, . . . , n}. A substitution σ is a preserving unifier for ∆

if and only if σ is preserving and σVi lL σV ′
i holds for each i ∈ {0, . . . , n}. A lL-

unification problem is solvable if the set of preserving unifiers U (∆) for ∆ is not empty.

5.3 Automating the Transformation

In this section, we show how to automate the correction of programs. To this end, we
first extend the transforming type system from [75] to incorporate unification. Subse-
quently, we show how the insertion of meta-variables and the unification process can
be automated.

Throughout the section, we will assume that the equivalence of expressions is de-
cidable. This assumption is required, as we have left expressions unspecified and as,
during the unification process, we need to determine whether ExpI ≡ Exp2 holds. For
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expression theories for which equivalence is not decidable, the precondition ExpI ≡
Exp2 can be replaced with syntactic equality Exp1 = Exp2 in the rules of Figure 5.1 and
in the unification calculus. In this way, precision in the approximation lL of uL is lost
and decidability is gained. All of our results carry over to this modified scenario.

5.3.1 A Transforming Type System

The transforming type system in Figure 5.2 has been derived from the one in [75]. We
use the judgment

V ↪→ V ′ : S

to denote the transformation of a program V ∈ ~ComV into a program V ′ ∈ ~ComV .
The intention is that V ′ has secure information flow and reflects the semantics of V as
specified by Definition 5.2. The slice S is a program in the sub-language SliceV that is
observationally equivalent to V ′.

The novelty over [75] is that our type system operates on ~ComV (rather than on
~Com) and that the rule for high conditionals has been altered. In the original type

system, a high conditional is transformed by sequentially composing each branch with
the slice of the other branch. Instead of cross-copying slices, our rule instantiates the
meta-variables that occur in the branches using preserving unifiers. The advantages
of this modification are discussed in Section 5.4. Note that the rule [THCond] does
not mandate the choice of a specific preserving unifier of the branches. Nevertheless,
we can prove that the type system meets our previously described intuition about the
judgment V ↪→ V ′ : S. For this, we need a lemma that describes the relationship
between V ′ and S.

Lemma 5.1. If V ↪→ V ′ : S can be derived then V ′ lL S holds.

The proof of Lemma 5.1 is given in Appendix A.3. The following theorem is an
immediate consequence of Theorems 5.2 and Lemma 5.1. It shows that lifting a pro-
gram, applying the transforming type system, and afterwards projecting out remaining
meta-variables meets the objectives discussed in Section 5.2.1.

Theorem 5.3 (Soundness of the Type System).
If V∗ ↪→ V ′ : S is derivable for some lifting V∗ ∈ ~ComV of a program V ∈ ~Com then

1. πV ′ is strongly secure, and

2. πV ′ ' V.



5.3. AUTOMATING THE TRANSFORMATION 63

skip ↪→ skip : skip
[TSkp]

X ↪→ X : X [TVar]

Id : H
Id := Exp ↪→ Id := Exp : skip

[THA]
Id : L Exp : L

Id := Exp ↪→ Id := Exp : Id := Exp
[TLA]

C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

C1; C2 ↪→ C′
1; C′

2 : S1; S2
[TSeq] B : L C ↪→ C′ : S

while B do C ↪→ while B do C′ : while B do S
[TWhl]

C1 ↪→ C′
1 : S1 V2 ↪→ V ′

2 : S2

fork(C1V2) ↪→ fork(C′
1V ′

2) : fork(S1S2)
[TFrk]

C1 ↪→ C′
1 : S1 . . . Cn ↪→ C′

n : Sn

〈C1, . . . , Cn〉 ↪→ 〈C′
1, . . . , C′

n〉 : 〈S1, . . . , Sn〉
[TPar]

B : L C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

if B then C1 else C2 ↪→ if B then C′
1 else C′

2 : if B then S1 else S2
[TLCond]

B : H C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2 σ ∈ U ({S1l?
LS2})

if B then C1 else C2 ↪→ if B then σC′
1 else σC′

2 : skip; σS1
[THCond]

Figure 5.2: A transforming security type system for programs with meta-variables

Proof. From Lemma 5.1 and the symmetry and transitivity of lL, we obtain V ′ lL V ′

which, by Definition 5.4, entails πV ′ lL πV ′. Assertion 1 then follows directly from
Theorem 5.1 and the definition of strong security.

By induction on the height of the derivation of V∗ ↪→ V ′ : S, one obtains V ′ = ρV∗

for some preserving substitution ρ. Assertion 2 follows from applying Theorem 5.2.2
to (πρ)(V∗).

For a fully automated analysis, we will now define more concretely where meta-
variables are inserted and how unifiers are determined.

5.3.2 Automatic Insertion of Meta-Variables.

When lifting a program, one is faced with a trade-off: inserting meta-variables means
creating possibilities for correcting the program, but it also increases the complexity of
the unification problem. Within this spectrum, our objective is to minimize the number
of inserted meta-variables without losing the possibility of correcting the program. To
this end, consider the sub-language PadV , the extension of StutV with assignments to
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high variables, which is defined by the following grammar:

C ::= X | skip | IdH := Exp | C1; C2

Here X is a placeholder for meta-variables in V , IdH is a placeholder for program vari-
ables in Var with domain H, and C1, C2 are placeholders for commands inPadV .

Observe that two programs C1 and C2 in PadV are related via lL whenever they
contain the same number of skips and assignments to high variables and the same
number of occurrences of each meta-variable α. The positioning of assignments and
meta-variables within the programs, however, is irrelevant. To formalize this, we de-
note the number of occurrences of skips and assignments in a program C ∈ PadV by
const(C) (skips and assignments will be the constants in our unification problem) and
the number of occurrences of each meta-variable α by |C|α.

Lemma 5.2. For two commands C1 and C2 in PadV , we have C1 lL C2 if and only if
const(C1) = const(C2) and ∀α ∈ V : |C1|α = |C2|α.

The proof of Lemma 5.2 is given in Appendix A.4.
Moreover, observe that inserting one meta-variable next to another does not create

new possibilities for correcting a program. This, together with Lemma 5.2, implies that
inserting one meta-variable into every subprogram within Pad is sufficient for allowing
every possible correction. We use this insight to define the language MglV of most
general liftings. It is the sub-language of ComV that contains all liftings of programs in
Com in which the rightmost subterm of every sub-program in PadV is a (unique) meta-
variable. A technical side effect of the definition of MglV is the fact that it simplifies
inductive proofs.

Definition 5.6. The language MglV is the subset of commands given by the following
grammar and in which every meta-variable occurs at most once.

T ::= P | P; IdL := Exp; T | P; if B then T1 else T2; T |

P; while B do T1; T | P; fork(T1V); T

Here IdL is a placeholder for program variables in Var with domain L, T, T1, T2 are
placeholders for commands in MglV , V is a placeholder for a command vector in ~MglV ,
and P is a placeholder for a command of the form X or of the form C; X with C ∈ PadV .

The liftings in ~MglV are most general in the sense that if two programs can be made
observationally equivalent for some lifting, they can be made equivalent for any lifting
chosen from ~MglV .
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X fresh
skip ⇀ skip; X

Id : H X fresh
Id := Exp ⇀ Id := Exp; X

Id : L X, Y fresh
Id := Exp ⇀ X; Id := Exp; Y

C1 ⇀ C′
1; X C2 ⇀ C′

2

C1; C2 ⇀ C′
1; C′

2

C1 ⇀ C′
1, . . . , Cn ⇀ C′

n

〈C1, . . . , Cn〉 ⇀ 〈C′
1, . . . , C′

n〉
C1 ⇀ C′

1 V2 ⇀ V ′
2 X, Y fresh

fork(C1V2) ⇀ X; (fork(C′
1V ′

2)); Y
C ⇀ C′ X, Y fresh

while B do C ⇀ X; (while B do C′); Y

C1 ⇀ C′
1 C2 ⇀ C′

2 X, Y fresh
if B then C1 else C2 ⇀ X; (if B then C′

1 else C′
2); Y

Figure 5.3: A calculus for computing most general liftings

Lemma 5.3. Let Vi ∈ ~Com, with liftings V ′
i ∈ ~ComV and V∗

i ∈ ~MglV for i = 1, 2. Suppose
V∗

1 (V∗
2 ) shares no meta-variables with V ′

1, V ′
2, and V∗

2 (V ′
1, V ′

2, and V∗
1 ). Then we have

U ({V ′
1l

?
LV ′

2}) 6= ∅ implies U ({V∗
1l

?
LV∗

2 }) 6= ∅ .

The proof of Lemma 5.3 is given in Appendix A.5. The calculus ⇀: ~Com → ~ComV

turns the choice of a lifting in ~MglV into an algorithm. The mapping is defined induc-
tively: a fresh meta-variable is sequentially composed with the right-hand side of each
subprogram. Another fresh meta-variable is sequentially composed with the left-hand
side of each assignment to a low variable, fork, while loop, or conditional. A lifting of
a sequentially composed program is computed by sequentially composing the liftings
of the subprograms while removing the terminal variable of the left program. The full
calculus is given in Figure 5.3.

Example 5.4. Consider the program C = h1 := 1; h2 := 1; l := 0; h3 := 2. Applying the
lifting calculus to C results in the lifted program C = h1 := 1; h2 := 1; α1; l := 0; h3 := 2; α2.
♦

The program C from Example 5.4 contains substantially fewer meta-variables than
the program obtained by naive insertion of meta-variables between every two subpro-
grams. However, it still allows for every possible correction. This is a consequence of
the following lemma, which shows that liftings computed by ⇀ are most general in
the sense of Definition 5.6 and Lemma 5.3.
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Lemma 5.4. Let V ∈ ~Com and V ∈ ~ComV . If V ⇀ V can be derived, then

1. V is a lifting of V and

2. V ∈ ~MglV .

The proof of Lemma 5.4 is given in Appendix A.6. Putting Lemmas 5.3 and 5.4
together, we can prove the completeness of the calculus ⇀: if two programs can be
made observationally equivalent for some choice of liftings, then they can also be made
equivalent if we restrict ourselves to the liftings computed by ⇀.

Theorem 5.4. Let Vi ∈ ~Com with liftings V ′
i , Vi ∈ ~ComV for i = 1, 2. Suppose V1 (V2) shares

no meta-variables with V ′
1, V ′

2, and V2 (V ′
1, V ′

2, and V1). If V1 ⇀ V1 and V2 ⇀ V2 can be
derived, then

1. U ({V ′
1l

?
LV ′

2}) 6= ∅ implies U ({V1l?
LV2}) 6= ∅ , and

2. U ({V ′
1l

?
LV ′

1}) 6= ∅ implies U ({V1l?
LV1}) 6= ∅.

Part 2 of Theorem 5.4 shows that if a program can be repaired for some lifting (recall
that if a program is lL-equivalent to itself, then it is also secure), then it can also be
repaired if we restrict ourselves to the lifting computed by ⇀. Its proof is given in
Appendix A.7.

5.3.3 Automating Unification

Integrating Standard Unification Algorithms. Standard algorithms for the unifica-
tion modulo an associative and commutative operator with neutral element and con-
stants (see, e.g., [8] for background information on AC1 unification) build on solving
linear equations over the number of variables and constants that occur in the unifi-
cation problem. These equations correspond to the one given in in Lemma 5.2. This
allows for the employment of existing algorithms for AC1-unification problems with
constants and free function symbols (such as, e.g., the one in [40]) to the unification
problems that arise when applying the rule for conditionals and then to filter the out-
put such that only preserving substitutions remain. For the reader familiar with AC1

unification: in the language StutV , ε is viewed as the neutral element, skip as the con-
stant, and ; as the operator. Other language constructs, i.e., assignments, conditionals,
loops, forks, and ; (outside the language StutV ) must be treated as free constructors.



5.3. AUTOMATING THE TRANSFORMATION 67

On Most General Unifiers. When applying our transforming type system to pro-
grams with nested high conditionals, the rule [THCond] is applied iteratively. When
choosing a unifier of the branches, care must be taken not to rule out possible correc-
tions in subsequent applications of the rule [THCond]. A natural way to avoid this
pitfall is to use a most general unifier, i.e. a unifier that can be specialized to every other
unifier. Unfortunately, AC1-unification problems with constants do, in general, not
allow for most general unifiers [8]. This result carries over to lL.

Example 5.5. The substitutions η1 = {α1\ε, α2\skip} and η2 = {α1\skip, α2\ε} both
solve the unification problem ∆ = {α1; α2l?

Lskip}. In fact, every possible solution of ∆
must be ground for α1; α2, so there can be no unifier σ with substitutions ρ1 and ρ2 such
that η1 = ρ1 ◦ σ and η2 = ρ2 ◦ σ hold. In other words, no most general unifier exists for
∆. ♦

As in AC1-unification problems with constants, the role of most general unifiers
for lL can be replaced by the more general notion of a complete set of unifiers. For a
given unification problem ∆, a complete set of unifiers is a set A ⊆ U (∆), such that
for every unifier σ ∈ U (∆), there is a substitution ρ and a η ∈ A such that σ = ρη.
Minimal complete sets of unifiers can be computed and used in a transforming type
system. To avoid backtracking in the search, such a type system could return an entire
set of transformed commands. Typing a high conditional then amounts to computing
a complete set of unifiers for each combination of a command from the set returned
for the then-branch with a command returned for the else-branch. Each unifier is then
applied to the respective pair, resulting in a set of possible transformations for the high
conditional. The transforming process succeeds, if the set of possible transformations
of a program is not empty. Otherwise, the program is rejected as uncorrectable. For-
tunately, we can avoid this explosion in complexity by using a more problem-tailored
unification algorithm.

A Problem-Tailored Solution. We next present a unification algorithm that makes
use of additional information on the positions where we inserted the meta-variables
and the limited range of preserving substitutions. Recall that we operate on programs
in SliceV , i.e., on programs without assignments to high variables, without assign-
ments of high expressions to low variables, and without loops or conditionals with
high guards.

The unification algorithm in Figures 5.4 and 5.5 is given in the form of a calcu-
lus for judgments of the form C1l?

LC2 :: η, meaning that η is a preserving unifier of



68 CHAPTER 5. ELIMINATING SIDE-CHANNELS

C1l?
LC′

1 :: η1 C2l?
LC′

2 :: η2 C1, C′
1 ∈ NSeqV

C1; C2l?
LC′

1; C′
2 :: η1 ∪ η2

[USeq3]

C1l?
LC′

1 :: η1 C2l?
LC′

2 :: η2 C1, C′
1 ∈ StutV ∪ {ε} C2, C′

2 ∈ NStutV
C1; C2l?

LC′
1; C′

2 :: η1 ∪ η2
[USeq4]

C1l?
LC2 :: η B1, B2 : L B1 ≡ B2

while B1 do C1l?
Lwhile B2 do C2 :: η

[UWhl]
Id : L Exp1 ≡ Exp2

Id := Exp1l
?
LId := Exp2 :: ∅

[UAsg]

Cl?
LC′ :: η1 Vl?

LV ′ :: η2

fork(CV)l?
Lfork(C′V ′) :: η1 ∪ η2

[UFrk]
C1l?

LC′
1 :: η1, . . . , Cnl?

LC′
n :: ηn

〈C1, . . . , Cn〉l?
L〈C

′
1, . . . , C′

n〉 ::
⋃n

i=1 ηi
[UPar]

C1l?
LC′

1 :: η1 C2l?
LC′

2 :: η2 B1, B2 : L B1 ≡ B2

if B1 then C1 else C2l?
Lif B2 then C′

1 else C′
2 :: η1 ∪ η2

[UCond]

Figure 5.4: Unification calculus part I

C ∈ StutV ∪ {ε}
Xl?

LC :: {X\C}
[UVar1]

C ∈ StutV ∪ {ε}
Cl?

LX :: {X\C}
[UVar2]

C1l?
LC2 :: η C1, C2 ∈ StutV

X; C1l?
LC2 :: η ∪ {X\ε}

[USeq1]
C1l?

LC2 :: η C1, C2 ∈ StutV
C1l?

LX; C2 :: η ∪ {X\ε}
[USeq′1]

C1l?
LC2 :: η C1, C2 ∈ StutV

skip; C1l?
Lskip; C2 :: η

[USeq2]

Figure 5.5: Unification calculus part II

the commands C1 and C2. The operative intuition behind the rules in Figure 5.4 is
to scan two program terms from left to right and distinguish two cases: if both left-
most subcommands are free constructors, (low assignments, loops, conditionals and
forks), they are compared, and, if they agree, unification is recursively applied to pairs
of corresponding subprograms and the residual programs (see rules [UAsg], [UWhl],
[UCond], and [UFrk]). If one leftmost subcommand is skip, both programs are decom-
posed into their maximal initial subprograms in StutV and the remaining program (see
rule [USeq4]). Formally, we define the language NSeqV of commands in SliceV \ {skip}
without sequential composition as a top-level operator. The language NStutV is the
set of commands in SliceV given by the grammar C ::= C1; C2, where C1 ∈ NSeqV and
C2 ∈ SliceV . The rule [USeq3] can then be applied to the remainders, and separates



5.3. AUTOMATING THE TRANSFORMATION 69

the initial free constructors from the programs that are sequentially composed to their
right-hand side. Recursive decomposition eventually leads to unification problems on
StutV .

The unification algorithms for programs in StutV is given in Figure 5.5. The oper-
ative intuition behind it is to scan two programs in StutV from left to right. The rule
[USeq2] removes initial skips. The rules [USeq1], [USeq′1], [UVar1], and [UVar2] govern
how basic unifiers are constructed: meta-variables that occur at the end of a program
in StutV are mapped to the program to be unified with. All other meta-variables are
mapped to ε. Note that the unifiers obtained from recursive application of the al-
gorithm to sub-programs are combined by set union. This is admissible if the meta-
variables in all subprograms are disjoint, which is the case for the unification problems
that arise during transformation.

Lemma 5.5. Let V1, V2 ∈ ~SliceV and assume that no meta-variable occurs more than once in
(V1, V2). If V1l?

LV2 :: η, then

1. η ∈ U ({V1l?
LV2}), and

2. η is idempotent, and

3. dom(η) ∪ var(ran(η)) ⊆ var(V1) ∪ var(V2), and

4. V1, V2 ∈ ~MglV implies ηV1, ηV2 ∈ ~MglV ,

where var(·) returns the set of meta-variables occurring in a command or a set of commands in
~ComV .

The proof of Lemma 5.5 is given in Appendix A.8.
As Property 2 of Lemma 5.5 shows, the unifiers η computed by our calculus are

idempotent, i.e. η ◦ η = η holds. Property 3 is the reason why unifiers may be com-
bined using set union. Property 4 is a substitute for the existence of most general
unifiers as, in combination with Lemma 5.3, it implies that we do not lose the possi-
bility for subsequent corrections by applying the unifiers computed with our calculus.
This fact allows us to prove the completeness of our transforming type system in the
following section.

5.3.4 Completeness

Below, we show the completeness of our approach, in the sense that every program
that can be repaired by inserting skip commands at arbitrary positions in the program
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can also be repaired using our method. In other words, by first applying the lifting
calculus from Figure 5.3 and then applying the transforming type system shown in
Figure 5.2, where unification is instantiated with the algorithm in Figures 5.4 and 5.5,
we do not lose any possible corrections. In particular, our approach is complete with
respect to applying the transforming type system to arbitrary liftings and instantiating
it with an unification algorithm of choice.

Theorem 5.5 (Completeness). Let V ∈ ~Com, V, W ∈ ~ComV , W be a lifting of V, and
V ⇀ V.

1. If there is a preserving substitution σ with σW lL σW, then V ↪→′ V ′ : S for some
V ′, S ∈ ~ComV .

2. If W ↪→ W ′ : S for some W ′, S ∈ ~ComV then V ↪→′ V ′ : S′ for some V ′, S′ ∈ ~ComV .

Here, the judgment V ↪→′ V ′ : S denotes a successful transformation of V to V ′ by
the transforming type system, where the precondition σ ∈ U ({S1l?

LS2}) is replaced by
S1l?

LS2 :: σ in rule [THCond]. The proof of Theorem 5.5 is given in Appendix A.9.

5.4 Comparison

Section 5.3 made our novel approach to transformational typing concrete in the context
of a multithreaded programming language. Below, we show that this instance com-
pares favorably with the cross-copying technique from [75], outlined in Section 5.1.1.
A comparison to related approaches for sequential languages [4, 10, 39] and less re-
strictive notions of security for multithreaded programs [70] will be made in Chapter
7.

Improved Precision and Quality of Transformations. The type system introduced
in Section 5.3 is capable of analyzing programs where assignments to low variables
appear in the branches of conditionals with high guards, which is not possible with
the type system in [75].

Example 5.6. If one lifts C = if h1 then (h2 := Exp1; l := Exp2) else (l := Exp2), where
Exp2 : L, using our lifting calculus, applies our transforming type system, and finally
removes all remaining meta-variables by applying a projection, then this results in

if h1 then (h2 := Exp1; l := Exp2) else (skip; l := Exp2) ,
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a program that is strongly secure and also weakly bisimilar to C. Note that the program
C cannot be repaired by applying the type system from [75], as assignments to low
variables occur in the branches. ♦

Another advantage of our unification-based approach in comparison to the cross-
copying technique is that the resulting programs are faster and smaller in size.

Example 5.7. The program if h then (h1 := Exp1) else (h2 := Exp2) is returned unmodi-
fied by our type system, while the type system from [75] transforms it into the bigger
program if h then (h1 := Exp1; skip) else (skip; h2 := Exp2). If this type system is applied
a second time, an even bigger program is obtained, namely

if h then (h1 := Exp1; skip; skip; skip) else (skip; skip; skip; h2 := Exp2) .

In contrast, our type system realizes a transformation that is idempotent, i.e. the pro-
gram resulting from the transformation remains unmodified under a second appli-
cation of the transformation. This property turns out to be helpful in the context of
multi-level security policies (see Section 2.4.1). ♦

The chosen instantiation of our approach preserves the program behavior in the
sense of a weak bisimulation. Naturally, more programs can be corrected if one is will-
ing to relax this relationship between input and output of the transformation. For this
reason, there are also some programs that cannot be corrected with our type system,
although they can be corrected with the type system in [75] (which assumes a weaker
relationship between the input and the output). As the following example shows, the
downside of such a more permissive transformation is that it might lead to undesired
program behavior.

Example 5.8. The program if h then (while l do (h1 := Exp)) else (h2 := 1) is rejected by
our type system. The type system in [75] transforms it into the strongly secure program

if h then (while l do (h1 := Exp); skip) else (while l do (skip); h2 := 1) .

Note that this program is not weakly bisimilar to the original program, as the cross-
copying of the while loop introduces possible non-termination. ♦

If one wishes to permit such transformations, one could, for instance, choose a sim-
ulation instead of the weak bisimulation in a variant of our approach. This would
allow for an extended range of substitutions beyond StutV . For instance, for correct-
ing the program in Example 5.8, one would need to instantiate a meta-variable with a
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while loop. In such a setting, using our approach could even further broaden the scope
of corrections while retaining the advantage of transformed programs that are compa-
rably small and fast. It is not clear to us yet, however, how the concurrent version of
cross-copying from [73] could be simulated in our approach.

Multi-Level Security Policies. Non-transforming security type systems for the two-
level security policy can even be used to analyze programs under a policy with more
domains. To this end, multiple type checks are performed, where each pass ensures
that no illegitimate information flow can occur into a designated domain. For instance,
consider a three-domain policy with domains D = {top, left, right}, where information
may only flow from left and from right to top. To analyze a program under this policy,
all variables with label top and left are considered as if labeled H in a first type check
(ensuring that there is no illegitimate information flow to right) and, in a second type
check, all variables with label top and right are considered as if labeled H. There is
no need for a type check from the perspective of top, as all information may flow to
top. When adopting this approach for transforming type systems, one must take into
account that the guarantees established by the type check for one domain might not
be preserved under the modifications caused by the transformation for another do-
main. Therefore, the process must be iterated until a fixpoint is reached for all security
domains.

Example 5.9. For the three-level policy from above (assuming t1, t2 : top, r1, r2 : right
and l1, l2 : left), the program if t1 then (t1 := t2; r1 := r2; l1 := l2) else (r1 := r2; l1 := l2)
is lifted to if t1 then (t2 := t2; r1 := r2; α1; l1 := l2; α2) else (r1 := r2; α3; l1 := l2; α4) and
transformed into

if t1 then (t1 := t2; r1 := r2; l1 := l2) else (r1 := r2; skip; l1 := l2)

when analyzing security w.r.t. an observer with domain left. Lifting for right then
results in

if t1 then (t1 := t2; α1; r1 := r2; l1 := l2; α2) else (α3; r1 := r2; skip; l1 := l2; α4) .

Unification and projection gives

if t1 then (t1 := t2; r1 := r2; l1 := l2; skip) else (skip; r1 := r2; skip; l1 := l2) .

Observe that this program is no longer secure from the viewpoint of a left–observer.
Applying the transformation again for domain left results in the secure program

if t then (t1 := t2; r1 := r2; skip; l1 := l2; skip) else (skip; r1 := r2; skip; l1 := l2; skip) ,
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which is a fixpoint of both transformations. ♦

Note that the idempotence of the transformation is necessary (but not sufficient)
for the existence of a fixpoint and, hence, for the termination of such an iterative ap-
proach. As is illustrated in Example 5.7, the transformation realized by our type system
is idempotent, whereas the transformation from [75] is not.

Another possibility for tackling multi-level security policies in our setting is to
unify the branches of a conditional with guard of security level D′ under the theory⋂

D 6≥D′ lD. This would result in a multi-level, transforming security type system that
supports a single-pass transformation. However, an investigation of this possibility
remains to be done.

5.5 Summary

We proposed a novel approach to transformational typing, where the key idea is to use
unification in order to establish the observational equivalence of alternative execution
paths due to different secret inputs to a program. This yielded a new perspective on
the problem of eliminating scheduling leaks.

We proved that the resulting type system is sound in the sense that every typeable
program is also strongly secure. Furthermore, we proved that the transformation is
complete in the sense that it can repair any program that is repairable by insertion of
dummy computation steps. The main advantages of our approach are that a larger
class of insecure programs can be corrected, the resulting programs are faster and
smaller in size, and it offers the possibility of analyzing programs under security poli-
cies with more than two security domains.
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Chapter 6

Applications

6.1 Introduction

In this chapter, we apply the techniques developed in Chapters 3 and 4 for analyzing
the resistance of hardware implementations of cryptographic algorithms to timing at-
tacks: we determine the information that is leaked through the execution time, both
qualitatively (in terms of what part of the secret is leaked) and quantitatively (in terms
of the resistance Φ).

We analyze three examples: two circuits for bit-serial multiplication of nonnega-
tive integers, and a circuit for exponentiation in the field GF(2k). Exponentiation over
GF(2k) is relevant, for example, in the generalized ElGamal encryption scheme, where
decryption consists of one exponentiation and one multiplication step [56]. All of our
example circuits are specified in the hardware description language GEZEL, which we
introduced in Section 2.3.

To begin with, we will give a short description of the functionality of the circuits
to be analyzed. Subsequently, we will analyze their timing side-channels qualitatively
and quantitatively in Sections 6.3 and 6.4, respectively.

6.2 The Circuits

Bit-serial Multiplication. For multiplying two natural numbers m and n bitwise,
consider the representation n = Σk−1

i=0 ni2i, where ni denotes the ith bit of n. The product
m · Σk−1

i=0 ni2i can be expanded to

(. . . ((nk−1 ·m) · 2 + nk−2 ·m) · 2 + . . . ) · 2 + n0 ·m ,

75
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which can easily be turned into an algorithm: starting with p = 0, one iterates over
all the bits of n, beginning with the most significant bit. If ni = 1, one updates p by
adding m and then doubling p’s value. Alternatively, if ni = 0, one updates p by just
doubling its value. At the end of the loop, p = m · n.

We implemented two versions of this algorithm. In the first version, the doubling
and adding operations each take one clock cycle. Hence, the running time reflects the
number of 1-bits in n. In the second version, we introduce a dummy step whenever
no addition takes place. The running time of the version padded in this manner is
independent of the operands.

Both GEZEL-implementations receive inputs n and m through signals n_in and
m_in, respectively. If the computation has completed, the output is given in an out-
put signal result and a flag done that is set to signal termination. Our implementa-
tions read their input values during the first clock cycle and ignore subsequent inputs.
That is, the corresponding Mealy machines are triggered (see Section 4.3.4). The full
GEZEL-code of the unpadded algorithm is given in Appendix B.1.

Exponentiation in a Finite Field. We analyzed a hardware implementation of the
finite field exponentiation algorithm from [29]. Basically, it consists of the following
three building blocks:

1. To compute the exponentiation of a field element x with exponent a = Σn−1
i=0 ai2i,

one iterates over all bits of the exponent

xa = (. . . (((xan−1)2 · xan−2)2 · xan−3)2 · . . . )2 · xa0 . (6.1)

In finite fields, every element x is represented by the coefficients of a polynomial,
and thus each square and each multiplication operation in Equation 6.1 is again
implemented by a loop.

2. Multiplication of polynomials q and x = Σr−1
j=0 xjT j is computed using the expan-

sion (. . . ((xr−1 · q) · T + xr−2 · q) · T + . . . ) + x0 · q in a loop similar to the one for
bit-serial multiplication.

3. At the bit level, multiplication by T of a polynomial represented by coefficients
s = (sr−1, . . . , s0) can be implemented as follows. If sr−1 = 0, left-shift s by one.
If sr−1 = 1, left-shift s by one and XOR the result with the coefficients of the field
polynomial.
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The full GEZEL-code of the exponentiation algorithm is given in Appendix B.2. It re-
ceives inputs x and a through signals x_in and a_in, respectively. If the computation
has completed, the output is given in an output signal result and a flag done that is
set to signal termination. The implementation is triggered, that is, it reads its inputs
only during the first clock cycle.

6.3 Qualitative Analysis

We analyze our examples with respect to two security properties, namely NI-security
and HW-security. As previously explained, a NI-secure system does not leak any in-
formation from the high into the low domain. HW-security is a weaker property: a
HW-secure system does not leak more than the Hamming weight of its secret input.
Both NI-security and HW-security are instantiations of the general notion of RI/RO-
security introduced in Section 2.4. For deciding whether a given system satisfies NI-
security or HW-security, we can hence use the decision procedure developed in Section
3.2.

We implemented this decision procedure in SMV (see Section 3.4); therefore we
need to translate the GEZEL-implementation to the input language of SMV. For our
experiments, we did this translation by hand. However, the semantic gap between
both languages is so small that an automated translation is straightforward and has
already been implemented in the context of a student project [50].

6.3.1 Security Properties

NI-security. NI-security is an abbreviation of AllΣH × IdΣL /AllΓH × IdΓL-security (see
Section 2.4). In Section 3.4, we showed how SMV can be used for deciding NI-security.
We use this implementation in our experiments. As in Section 3.4, we assume that the
translations to SMV of our circuits receive high and low input in variables hi_in and
lo_in, respectively, and provide high and low output in variables hi_out and lo_out,
respectively.

In our translation from GEZEL to SMV, the secret input signals of the exponentia-
tion and multiplication algorithms (a_in and n_in, respectively) are mapped to hi_in.
The public input signals (x_in and m_in, respectively) are mapped to lo_in. The out-
put signals done are mapped to the SMV-variable lo_out. As we are only interested
in timing side-channels, we ignore the output result by mapping it to the variable
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sys2.hi_in:=

case

hi1[0]+...+hi1[SIZE-1]=hi2[0]+...+hi2[SIZE-1] : hi2;

1 : hi1;

esac;

Figure 6.1: Deciding HW-security in SMV

hi_out.

HW-security. For ΣH = {0, 1}n, we define HW-security as an abbreviation for Ψ ×
IdΣL /AllΓL × IdΓL-security, where Ψ = {(a, b) ∈ ΣH × ΣH | ‖a‖ = ‖b‖} and where
‖x‖ denotes the Hamming weight of x. That is, a HW-secure system produces indis-
tinguishable output whenever it is provided with two input sequences that are indis-
tinguishable with respect to the Hamming weight of corresponding high inputs. As
Proposition 4.2 shows, we have πΨ v πa for all attack strategies a against a HW-secure
system. Hence no attacker can deduce more than the Ψ-equivalence class of the secret
input or, equivalently, the secret input’s Hamming weight.

As for NI-security, we can implement the decision procedure for HW-security in
SMV. The construction is similar to that for NI-security, described in Section 3.4; the
only difference is that we modify the input to hi_in of sys2 in line 10 of Figure 3.1, as
described in Figure 6.1. The variables hi1 and hi2 both take all possible values in their
range. Only when their Hamming weight coincides is sys2 fed with hi2. Otherwise its
input is hi1. In this way, we ensure that the inputs to both instances of circuit always
have the same Hamming weight and that all such combinations are considered.

For deciding the HW-security with respect to an observer who may only measure
the timing behavior, we map the secret input signals of the exponentiation and mul-
tiplication algorithms (a_in and n_in, respectively) to hi_in. The public input sig-
nals (x_in and m_in, respectively) are mapped to lo_in. The output signals done are
mapped to the SMV-variable lo_out. As we are only interested in timing side-channels,
we ignore the output result by mapping it to the variable hi_out.

6.3.2 Results

The table in Figure 6.2 presents the results of our analysis. The first column corre-
sponds to the serial multiplication algorithm where dummy steps are inserted to avoid
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Multiplication
(padded)

Multiplication
(unpadded)

Exponentiation

NI-security X × ×
HW-security X X ×

Figure 6.2: Results of the analysis

timing leaks. The second column corresponds to the multiplication algorithm without
dummy steps, and the third column contains the results for the finite-field exponentia-
tion algorithm. The rows correspond to NI-security and HW-security, respectively. An
entry X denotes that the model is secure with respect to the corresponding notion of
security, whereas × denotes that this is not the case.

Integer Multiplication (padded). The first column reflects what was intended by in-
serting dummy computation steps into the design: the circuit’s execution time is inde-
pendent of the input to the signal n_in and, hence, it is NI-secure.

Integer Multiplication (unpadded). The second column shows that the circuit im-
plementing multiplication without dummy computation is not NI-secure, that is, its
running time depends on the input to the signal n_in. However, it is HW-secure, that
is, if the implementation is only run on inputs with equal Hamming weight, then no
differences in the circuit’s running times can be observed. As the circuit is triggered,
no more than the Hamming weight of the input can be leaked.

Finite Field Exponentiation. The third column shows that the running time of the
exponentiation algorithm depends on the input to the input signal a_in, which is the
exponent. When considering only loop 1 (see Section 6.2), one might expect the same
result as for bit-serial multiplication. However, the circuit is not HW-secure, which
shows that this is not the case: even when provided with input of the same Hamming
weight, the system shows differences in its running times. In the counterexample com-
puted by SMV, the first difference between the sequences of states reached in both
instances of circuit occurs after 20 steps. Distinguishable output is not produced un-
til 36 steps, which corresponds to the minimal number of clock cycles required for any
exponentiation with this circuit. A failed check for HW-security implies that informa-
tion other than the Hamming weight can be extracted in an attack. In Section 6.4, we
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will subject this circuit to a quantitative analysis, which will allow us to analyze the
information that is leaked in more detail.

Performance. We performed our experiments on a 2.4 GHz machine with 3 gigabytes
of RAM. In the case of serial multiplication, we were able to analyze designs up to 10
bits per operand within one minute. In the case of exponentiation, we were able to
analyze designs with up to 3 bits per operand within 2 minutes.1 For larger bit-widths,
the running times increased notably. Note that these numbers were obtained by using
SMV “out of the box”, that is, without applying one of the many existing optimization
techniques. We expect a significant performance gain by tailoring the search procedure
to our specific problem instance, for example by adopting abstraction techniques for
handling bit-vectors.

6.4 Quantitative Analysis

In this section, we analyze the presented circuits with the quantitative techniques de-
veloped in Chapter 4. Our goal is to determine the resistance Φ of our implementations
with respect to timing attacks. Throughout this section, we use the guessing entropy G
as a measure of uncertainty and we abbreviate ΦG by Φ and Φ̂G by Φ̂, respectively. We
assume a uniform probability distribution of the secrets and we compute the remain-
ing uncertainty with the formula given in Proposition 4.3.2.

6.4.1 Approximation Techniques

Computing Φ using the algorithm from Theorem 4.1 is expensive. The time required is
doubly exponential in the number of attack steps, and the sizes of the input parameter
sets are exponential in the number of bits used to represent the parameters. Hence,
we cannot feasibly compute Φ for large parameter sizes. We use two approximation
techniques to address this problem.

1. We approximate Φ by Φ̂. We will see that Φ̂ matches Φ on our example data, al-
though this does not hold in general (see Example 4.9).

2. We parameterize each algorithm by the bit-width w of its operands. Our working
assumption is that regularity in the values of Φ for w ∈ {2, . . . , wmax} reflects the

1This corresponds to a state-space size of approximately 252 for the product automaton.
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Figure 6.3: Integer multiplication

structural similarity of the parameterized algorithms. This allows us to extrapo-
late to values of w beyond wmax. To make this explicit, we will write Φw to denote
that Φ is computed on w-bit operands.

For each algorithm and each bit-width w ∈ {2, . . . , 8}, we use the GEZEL simula-
tor to build up value tables for the timing side-channel f : {0, 1}w × {0, 1}w → N.
From this value table, we extract the partitions that we use as input to the HASKELL-
implementation of Φ̂.

Next we present our experimental results and discuss their implications.

6.4.2 Results

Integer Multiplication (unpadded). The results of the analysis of the unpadded in-
teger multiplication algorithm are depicted by the solid line in Figure 6.3. For their
interpretation, observe that Φ̂w(1) = Φ̂w(2) holds. Hence, according to Proposition 4.5,
the graph actually depicts Φw. There are two conclusions to be drawn from Figure 6.3.
First, the circuit’s timing behavior depends on the number of 1-bits in the secret. This
leads to the hypothesis that the Hamming weight of the secret is revealed or, equiva-
lently, that two secrets are indistinguishable iff they have the same Hamming weight.
The equivalence class of w-bit arguments with Hamming weight k has precisely

(w
k
)

elements. Hence, according to Proposition 4.3, the conditional guessing entropy for
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Figure 6.4: Finite-field exponentiation

the corresponding partition is given by 1
2w+1 ∑w

k=0
(w

k
)2 + 1

2 . The values computed us-
ing this expression match the solid curve in Figure 6.3, which confirms our hypothesis
and the result from the qualitative analysis in Section 6.3.2.

Second, Figure 6.3 shows that a single side-channel measurement is enough to ex-
tract the maximal information revealed by the circuit’s timing behavior. This follows,
as Φw(1) and Φw(2) coincide, and is due to the fact that the circuit’s running time is inde-
pendent of the public parameter. It is beyond the scope of information-flow analyses,
such as the ones developed in Chapter 3, to reason about the number of measurements
needed to obtain information.

Integer Multiplication (padded). The result of the analysis of the padded integer
multiplication algorithm is given by the dashed line in Figure 6.3. The curve matches
the guessing entropy for a secret without side-channel information, given by 0.5(2w +
1). This implies that the circuit’s timing behavior does not leak any secret information,
which confirms the result from our qualitative analysis in Section 6.3.2.

Finite Field Exponentiation. The results of the analysis of the finite field exponenti-
ation algorithm are given in Figure 6.4. For their interpretation, observe that Φw(1) =
Φ̂w(1) and Φ̂w ≥ Φw follow from Proposition 4.5. We conclude that one timing mea-
surement reveals a quantity of information larger than that contained in the Hamming
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weight, but that it does not completely determine the secret. A second measurement,
however, can reveal all remaining information about the secret. Hence, the exponenti-
ation algorithm is vulnerable to timing attacks.

Performance and Scaling-Up. With precomputed value tables for the time consump-
tion of the finite field exponentiation algorithm, the computation of Φ̂8(2) took 40
minutes on a 2.4 GHz machine with 3 gigabytes of RAM. However, the algorithms
presented in Section 4.5 rely on the complete enumeration of the set of secrets and
therefore do not scale. Fortunately, our data shows regularity and we can successfully
extrapolate to larger bit-widths. Under our working assumption that the regularity in
the data reflects the structural similarity of the parameterized algorithms, we conclude
that the interpretations given for each algorithm hold, regardless of the implementa-
tion’s bit-width.

6.5 Conclusions
In this chapter, we analyzed nontrivial hardware implementations for their vulnera-
bility to timing attacks. We thereby illustrated the scope and the power of the analysis
techniques developed in Chapters 3 and 4.

The analysis methods we presented in Section 3 allowed us to precisely characterize
the maximal information that an attacker can extracted from a circuit by observing
its timing behavior. Both the formal characterization and the formal verification of
the leakage of the Hamming weight through timing behavior are beyond the scope
of existing methods for information flow analysis. Our method also allowed us to
detect that the finite field exponentiaton algorithm leaks information other than the
Hamming weight of its exponent. However, it is beyond the scope of the techniques
described in Chapter 3 to fully characterize this information or to reason about the
attacker’s effort (in terms of side-channel measurements) to obtain it.

The techniques we presented in Chapter 4 allowed for a more detailed analysis. For
the integer multiplication algorithms, they allowed us to conclude that the maximally
leaked information is already contained in one measurement. For the exponentiation
algorithm, they allowed us to conclude that all the exponent information can be ex-
tracted, and that this can be achieved in only two measurements. To our knowledge,
this is the first approach that allows for the expression (and computation) of the side-
channel leakage of a system as a function of the number of measurements made by an
attacker.



84 CHAPTER 6. APPLICATIONS



Chapter 7

Related Work

7.1 Attacks and Countermeasures

Kocher’s timing attack [43] is the first side-channel attack against a cryptographic al-
gorithm. Since its publication, the timing behavior of a number of algorithms and
implementations has been exploited for side-channel cryptanalysis [31, 19, 15, 2]. Most
notably, Boneh and Brumley [15] extracted 1024 bit private keys within 2 hours by at-
tacking a standard OpenSSL RSA implementation on a remote server. Cache attacks
(see, e.g., [62, 3]) are timing attacks that exploit the timing differences between cache
misses and cache hits in multi-purpose processors. Attacks against the branch target
buffer of instruction pipelines [1] exploit similar mechanisms and can hence be seen
as instances of cache attacks. Caching side-channels cannot be directly captured in the
quantitative model presented in Chapter 4, as our model of explicit side-channels is
stateless.

Characteristics such as power consumption [44, 21, 69] and electromagnetic radi-
ation [33, 68] have also been exploited for cryptanalysis. In [47], we showed that the
model presented in Chapter 4 can also be used to give information-theoretic bounds
for power attacks.

A number of countermeasures against side-channel attacks have been proposed.
Here, we focus on countermeasures for defeating timing attacks, and we illustrate
them with the algorithm from Example 1.1. One approach is to add random delays
to the running time in order to make precise timing measurements impossible [43].
However, the author already observed that this technique can be rendered useless by
increasing the number of timing measurements and averaging their values. Another
countermeasure are blinding techniques [43, 15], and we focus on exponent blinding
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for modular exponentiation for illustration purposes. In exponentiation modulo n, the
exponent k can be blinded by adding rφ(n), where r is a random natural number and φ

is Euler’s function. Due to the Fermat-Euler theorem, ck+rφ(n) = ckcrφ(n) = ck mod n.
Applying this technique, ck can be computed with the algorithm in Example 1.1, with
a running time that depends on k + rφ(n) rather than directly on k. The blinding of the
message instead of the exponent is also possible, but requires an unblinding step.

Although blinding techniques are often the preferred solution in practice, they are
not a general remedy for timing leaks. First, as can be seen in our example, blinding
relies on the algebraic properties of the computed function. It works for securing RSA,
but is more difficult to apply to algorithms for computing functions with a less obvious
algebraic structure, such as AES or examples outside the realm of cryptography. Sec-
ond, potential new side-channels are introduced during the blinding (and unblinding)
steps. In this light, blinding simply relocates the problem of side-channels to a differ-
ent part of the implementation. Although we are not aware of a documented exploit,
timing differences in the blinding steps can, in principle, be exploited by side-channel
attacks. Another countermeasure is to ensure that the implementation exhibits a con-
stant execution time [43]. As we have seen, this countermeasure yields the provable
absence of timing leaks and its application can, to some extent, be automated. Its draw-
backs are that it is difficult to achieve constant running times on many platforms and
that the performance of a constant-time implementation may be unacceptable for some
applications. A less restrictive way of dealing with timing leaks is to ensure that only
an acceptable amount of secret information is revealed through them.

7.2 Related Theory

7.2.1 Notions of Security

A number of timing-sensitive notions of secure information flow have been proposed.
Agat [4] augments the program semantics with labels that express the elapse of time
consumed by the corresponding command. He uses bisimulation equivalence to cap-
ture timing side-channels. Barthe et al. [10] use a similar semantics, but express timing-
sensitive security without bisimulations. Hedin and Sands [39] augment the semantics
with timing information and an execution history, that (in principle) allows for cache
behavior to be incorporated. All approaches only sketch how the connection between
transition labels and the elapse of real time on target processors can be made, which
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is a nontrivial task. Tolstrup [87] augments the semantics of the hardware description
language VHDL with timing information. This has the advantage of a very concrete
system model, but requires him to deal with many peculiarities of the VHDL execution
model, such as processes and delta-time.

First approaches that consider partial information flow can be found in [25]. The
use of arbitrary equivalence relations for capturing partial information flow was pro-
posed in a timing-insensitive context [9, 35]. The definition of RI/RO-security marries
the timing-awareness of the bisimulation-based approaches with the accuracy of the
parameterized approaches. In [36], a parameterized and timing-sensitive definition of
secure information flow is given. However, it does not allow for input sequences of
arbitrary length and it is unclear whether it can be checked efficiently.

A number of information flow properties to capture the information flow in mul-
tithreaded programs have been proposed [84, 92, 16, 83]. Initial approaches express
security under possibilistic schedulers [84] and security under a fixed probabilistic
scheduling policy [92]. Strong security [75] offers security guarantees that hold in the
presence of a large class of schedulers and it can be expressed in terms of RI/RO-
security, as we have seen. Furthermore, it provides security guarantees with respect to
observers who can see the low variables during the entire program run. More recent
approaches to counter scheduling leaks build on less restrictive notions of security.
The information flow properties of [70, 71] rely on the assumption that the values of
the low variables can only be observed after the program has terminated and they hold
for a restricted class of schedulers. A consequence of stronger assumptions about the
scheduler and weaker assumptions about the attacker is that a larger class of programs
are considered as secure.

There has been substantial work in information-flow security on quantifying infor-
mation leaks, but the results are only partially applicable to the problem of analyzing
how much information a side-channel attacker can extract from a system. Early ap-
proaches focus on quantifying the capacity of covert channels between processes in
multi-user systems [59, 96, 38]. The models predate the first published side-channel
attack against cryptography [43] and are so general that it is unclear whether and how
they could be instantiated to quantify the side-channel leakage of cryptographic al-
gorithms. Di Pierro et al. [65] show how to quantify the number of statistical tests
an observer needs to perform to distinguish two processes in a probabilistic concur-
rent language. Lowe [51] quantifies information flow in a possibilistic process alge-
bra by counting the number of distinguishable behaviors. The information measures
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proposed by Clark et al. [22] are closest to those we introduced in Chapter 4. The au-
thors relate observational equivalence to random variables and use Shannon entropy
to quantify the information flow. However, their measure captures the information
gain of a passive observer instead of an active attacker: the public input to the sys-
tem is chosen with respect to a probability distribution and is not under the attacker’s
control.

7.2.2 Decidability Results

Product constructions, such as the one we use for deciding R/RO-security in the de-
terministic case, have been used for expressing information flow in timing-insensitive
settings [28, 9]. Decision procedures also exist for timing-sensitive notions of security
[32]. The machine model used is considerably different and no complexity results are
given, making a detailed comparison difficult.

Our decision procedure for nondeterministic RI/RO-security is a generalization of
the decision procedure for bisimulation equivalence given in [42]. The authors use
partition refinement for deciding process equivalence, an approach that is further op-
timized in [63]. Independently of our work, Dam [27] proposed a decision procedure
for strong security, which relies on the refinement of equivalence relations. It allows
one to decide strong security for a while-language without dynamic thread creation, if
the equivalence Exp1 ≡ Exp2 of arbitrary expressions Exp1, Exp2 is decidable. The time
complexity of Dam’s decision procedure is a polynomial of degree 4 in the size of the
state space, which matches the complexity bounds of our approach. Dam’s approach is
more general in that our restriction to finite memories is a sufficient but not a necessary
condition for the decidability of expressions. Our approach is more general in that we
can instantiate RI and RO to security properties beyond non-interference.

7.2.3 Security Type Systems

Early approaches for analyzing the information flow at the level of programming lan-
guages can be found in [30, 25]. A rigorous connection of syntax-based analyses with
semantic-based notions of security was made in [93]. This connection comes in the
form of a soundness result for a security type system, which guarantees that a ty-
peable program exhibits secure information flow. Such soundness proofs have since
become standard in theoretical works in the field. For an overview of language-based
approaches to information-flow security, refer to [74].
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A number of security type systems to counter timing leaks on a programming-
language level [4, 10, 39, 88] exist. We discussed the underlying notions of security
in Section 7.2.1. Here, we focus on type systems for multithreaded programs and
on mechanisms that involve program modifications. The focus of such transforma-
tions has been on the problem of making the branches of conditionals observation-
ally equivalent. An early proposal, though not yet a transformation, can be found in
the work by Volpano and Smith [92]. They investigate a simple multithreaded pro-
gramming language where they require entire conditionals to be executed atomically,
ruling out differences in the duration of alternative execution paths. Moreover, they
forbid assignments to variables that are observable for the attacker in order to avoid
other differences in the observable behavior. However, the atomic execution of en-
tire conditionals constrains parallelism and it is not obvious how the requirement of
atomic execution can be practically enforced [70]. The cross-copying technique, a less
restrictive solution, was proposed by Agat [4] and modified to fit into a multithreaded
scenario by Sabelfeld and Sands [75]. Both transforming type systems sequentially
compose each branch of a conditional with a program that simulates the timing be-
havior of the other branch. This cross-copying transformation ensures identical timing
behavior of the branches in the transformed program. As in [92], assignments to vari-
ables are forbidden if their values can be observed by the attacker. Another problem is
that the transformation can introduce non-termination into a program. This problem
is addressed, and partially solved, in [73] by composing the cross-copied programs
concurrently (rather than sequentially).

There is a natural trade-off between the permissiveness of a type system and the
strength of the security guarantees it provides. Recent transformational approaches
achieve weaker security guarantees while broadening the scope of program transfor-
mations. Russo et al. [70] propose a transformation that spawns new threads to close
timing leaks, and they prove its soundness for a round-robin scheduler and attackers
who can see the values of the low variables only upon termination of the program. The
transformation type system is more permissive than the transformation presented in
Chapter 5, in that it allows one to secure loops with high guards. The approach from
[71] allows for the securing of loops with high guards, and it is also applicable to multi-
level security policies. It relies on a modified runtime environment rather than on a
program transformation. The authors show that these modifications can be applied to
existing thread libraries, which is a promising step towards practical applicability.

Finally, type systems and model-checking techniques can be combined. Unno et al.
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[90] use a failed type check to identify subprograms that might cause illegal informa-
tion flow. Model-checking techniques are then applied to these subprograms in order
to identify a pair of execution paths that witness that non-interference is indeed vio-
lated. The restriction to subprograms reduces the complexity of the model-checking
problems. In this way, the efficiency of a type-based analysis can be combined with the
precision of a model-checking approach.

7.2.4 Models of Attacks

Models and theoretical bounds on what side-channel attackers can achieve are only
now emerging. Chari et al. [20] are the first to present methods for proving hardware
implementations secure. They propose a generic countermeasure for power attacks
and prove that it resists a given number of side-channel measurements.

In our model of adaptive attacks, we represent the attacker’s knowledge about the
secret as a set of possible values. Similar representations of knowledge have been used
in different contexts. König et al. [45] consider abstract storage devices. Although they
do not explicitly address side-channel attacks, their formalization of a read operation
corresponds to our formalization of single attack step in Chapter 4. It is not obvious
whether and how the theoretical results for abstract storage devices can help with the
analysis of side-channel attacks. Askarov and Sabelfeld [7] use the set of possible initial
states of a program to express a passive observer’s knowledge about a secret. This set
diminishes as the program run evolves and the number of observations increases.

Clarkson et al. [24] develop a model that allows for reasoning about an attacker’s
changing belief about a secret when he observes a run of a program. By considering
multiple runs where the attacker’s (post-)belief after one run is his (pre-)belief before
the next run, one can, in principle, capture adaptive attacks. Beliefs about secrets may
also be wrong. This has no correspondence in our model, where we assume that the
attacker can make noiseless measurements and has full knowledge about the imple-
mentation. It would be interesting to see whether beliefs could be used in order to
weaken our assumption of error-free measurements.

Micali et al. [58] propose physically observable cryptography, a mathematical model
that aims at providing provably secure cryptography on hardware that is only par-
tially shielded. Their model has recently been specialized by Standaert et al. [86, 85],
who show how assumptions on the computational capabilities of an attacker can be
combined with leakage functions that measure the information that is revealed by the
system’s side-channels. How to instantiate these leakage functions is an open problem.
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As the approach focuses on power attacks and does not take into account adaptive at-
tackers, using our model to instantiate these functions is not straightforward and we
leave a detailed investigation of this possibility to future work.
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Chapter 8

Conclusions

8.1 Summary of Contributions

We have presented RI/RO-security, a parametric and timing-sensitive information flow
property that can be instantiated to a number of relevant security properties, including
the strong security of multithreaded programs and properties that allow for the expres-
sion of partial information release for Mealy machines. We have given algorithms and
complexity bounds for the problem of deciding RI/RO-security on deterministic and
nondeterministic finite-state systems. The algorithms for the deterministic case can
easily be implemented in the model-checker SMV, and we have applied them to ana-
lyze the timing side-channels of nontrivial synchronous circuits with inputs of small
bit-widths. For this application domain, we thus solve the open problem of detecting
(timing) side-channels.

The mere detection of a side-channel does not give detailed information about how
vulnerable to attacks an implementation actually is: it is possible that only a negligible
amount of secret information is leaked through the channel, or that an attacker’s ef-
fort for obtaining sufficient side-channel information is too high to mount an attack in
practice. We have presented a quantitative model of adaptive side-channel attacks that
allows for a more detailed assessment of an implementation’s vulnerability to side-
channel attacks. To this end, we have formalized attack strategies and combined them
with information-theoretic entropy measures. This allowed us to define the attacker’s
remaining uncertainty about the secret as a function of the number of side-channel
measurements made. We have shown how this function can be computed, and we
have provided techniques that allow it to be approximated for larger bit-widths. We
have implemented our technique and we have used it to derive meaningful asser-
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tions about the vulnerability of hardware implementations to timing attacks. For a
deterministic and stateless model of side-channels, we thus solve the open problem of
quantifying the information that an adaptive attacker can extract in a given number of
measurements.

Finally, we have proposed a unification-based approach to eliminating scheduling
leaks in multithreaded programs. It repairs insecure programs for which all existing
approaches fail, and the results compare favorably with those of other transforma-
tions: the transformed programs are often faster and smaller in size. Furthermore, we
showed that our transformation is applicable for enforcing multi-level security poli-
cies. We thus improve on the state of the art for transforming multithreaded programs
secure.

8.2 Outlook

An area of future work for the detection of side-channels in synchronous hardware
along the lines of Chapter 3 would be to investigate algorithms and abstractions that
help us manage both larger systems and those with infinite state spaces. Techniques to
consider are model-checking approaches that more efficiently handle bit-vectors, and
data-independence-based abstractions. One could also investigate approaches to auto-
matically eliminating information leaks, either on the level of a hardware description
language or on the level of transition systems, e.g. as in [82, 64].

There are a variety of possible extensions to the quantitative model we presented
in Chapter 4. First, one could weaken the assumption of error-free measurements. It
would be interesting to see whether it is possible to retain the model’s simplicity and
applicability. Second, how to scale our techniques to larger bit-widths is an open is-
sue. For this, it is necessary to investigate more efficient algorithms and approximation
techniques for computing Φ. The most promising approach we have looked into so far
is the use of techniques for entropy estimation [11, 13]. Initial experimental results
of a student project [34] are encouraging: we were able to confirm that the presented
integer multiplication algorithm reveals one operand’s Hamming weight – for imple-
mentations with 100 bits per operand and with an error of less than 1%. However, the
existing confidence intervals for this estimation are too large for practical use, and, as
future work, we hope to improve them. Third, our model could be integrated with
computational attacker models, e.g. along the lines of [86], for deriving even more
realistic bounds for attackers that are computationally limited.
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It is an open question as to whether and how the unification-based transformation
we presented in Chapter 5 can be applied to other notions of observational equivalence
and other notions of program equivalence. Finally, it would be desirable to integrate
our fully automatic transformation into an interactive framework for supporting the
programmer in correcting insecure programs.

8.3 Final Remarks
Preserving the confidentiality of secrets in computing environments is a fundamental
problem of information security. A large body of work in information-flow security is
concerned with models for its formalization and methods for its mitigation. Although
the field has attracted many researchers and has produced a great number of mod-
els and methods, its results have not been widely adopted in practice. This has been
observed critically by a number of researchers in the field [60, 72, 97] and they have
identified different reasons for this. These reasons include that, first, non-interference
is a too strong property for practical use. For most applications, the existence of po-
tential channels is acceptable, as long as their “bandwidth” is sufficiently low. Second,
it is difficult to give faithful abstract models of many systems. If the covert channel is
not modeled precisely, it is unclear what is gained by a formal security analysis. Third,
for many kinds of covert channels, there are no documented real-world exploits. This
makes it difficult to justify laborious verification efforts for covert channel analysis.

Our work on eliminating scheduling side-channels was mainly motivated by an in-
terest in exploring the use of unification as a means for achieving observational equiv-
alence, which seems a natural choice in the Per model of security. Our primary goal
was not immediate applicability and, indeed, our work shares the aforementioned lim-
itations with many approaches in information-flow security.

In our work on the analysis of timing side-channels, we have addressed the gap be-
tween model and reality: we focused on synchronous hardware, where faithful timing
models are available. As we are up against real exploits, we were also able to base our
analysis on a concrete and realistic model of the attacker. This allowed us to derive
meaningful quantitative notions of information flow beyond non-interference. Finally,
we demonstrated by example that an analysis using our methods can be performed
at the push of a button. Hence, for a well-defined application domain and a concrete
threat model, our methods avoid the aforementioned obstacles for practical impact
and we believe that they can become a valuable part of future side-channel analysis
toolkits.
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Appendix A

Proofs of the Technical Results

A.1 Proof of Theorem 5.1

Before proving Theorem 5.1, we introduce a lemma and prove it using the bisimulation-
up-to technique.

Definition A.1. A binary relation R on commands is a strong low bisimulation up to uL

if R is symmetric and

∀C, C′, C1, . . . , Cn ∈ Com.∀ν, ν′, µ ∈ Mem.
(C R C′ ∧ ν =L ν′ ∧ 〈|C, ν|〉 _ 〈|〈C1, . . . , Cn〉, µ|〉)
⇒∃C′

1, . . . , C′
n ∈ Com.∃µ′ ∈ Mem.(〈|C′, ν′|〉 _ 〈|〈C′

1, . . . , C′
n〉, µ′|〉

∧ ∀i ∈ {1, . . . , n}.Ci (R∪ uL)+ C′
i ∧ µ =L µ′)

(A.1)

Lemma A.1. If R is a strong low bisimulation up to uL then R ⊆uL holds.

Proof. Let Q = (R∪ uL)↑, where ↑ denotes the pointwise lifting of a relation on com-
mands to command vectors (here, uL is viewed as a relation on commands). It is
sufficient to show Q ⊆uL. To this end, we show that Q satisfies condition 2.2 in Def-
inition 2.7, and is therefore contained in uL, the union of all such relations. Let V =
〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C′
n〉 with (V, V ′) ∈ Q and let ν, ν′ ∈ Mem with ν =L ν′.

Suppose 〈|V, ν|〉 _ 〈|W, µ|〉. By definition of the operational semantics, there is an i ∈
{1, . . . , n} with 〈|Ci, ν|〉 _ 〈|〈Ci,1, . . . , Ci,m〉, µ|〉 and W = 〈C1, . . . , Ci−1, Ci,1, . . . , Ci,m, Ci+1,
. . . , Cn〉. We distinguish between the cases (Ci, C′

i) ∈uL and (Ci, C′
i) ∈ R.

(Ci, C′
i)∈uL: By Definition 2.7, there are C′

i,1, . . . , C′
i,m with 〈|C′

i , ν′|〉_ 〈|〈C′
i,1, . . . , C′

i,m〉, µ′|〉
where 〈Ci,1, . . . , Ci,m〉 uL 〈C′

i,1, . . . , C′
i,m〉 and µ =L µ′. From Definition 2.7 it follows that

Ci,j uL C′
i,j holds for all j ∈ {1, . . . , m}.
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(Ci, C′
i)∈R: By Definition A.1, there are C′

i,1, . . . , C′
i,m with 〈|C′

i , ν′|〉_ 〈|〈C′
i,1, . . . , C′

i,m〉, µ′|〉
where µ =L µ′ and Ci,j(R∪ uL)C′

i,j for all j ∈ {1, . . . , m}.

Hence, with W ′ = 〈C′
1, . . . , C′

i−1, C′
i,1, . . . , C′

i,m, C′
i+1, . . . , C′

n〉we have 〈|V ′, ν′|〉 _ 〈|W ′, µ′|〉
with (W, W ′) ∈ Q and µ =L µ′. As uL is defined to be the union of all symmetric
relations with the condition 2.2, Q ⊆uL follows.

Lemma A.2.

1. If Id : H then skip uL Id := Exp.

2. If Exp, Exp′ : L and Exp ≡ Exp′ then Id := Exp uL Id := Exp′.

3. If C1 uL C′
1 and C2 uL C′

2 then C1; C2 uL C′
1; C′

2.

4. If C1 uL C′
1 and V2 uL V ′

2 then fork(C1V2) uL fork(C′
1V ′

2).

5. If B, B′ : L, B ≡ B′, and C1 uL C′
1 then while B do C1 uL while B′ do C′

1.

6. If B, B′ : L, B ≡ B′, C1 uL C′
1, and C2 uL C′

2 then if B then C1 else C2 uL

if B′ then C′
1 else C′

2.

7. If C1 uL C′
1 and C1 uL C′

2 then skip; C1 uL if B′ then C′
1 else C′

2.

Proof. We illustrate the proof idea with three example cases. In each case, we prove the
strong low bisimilarity of the two commands with the bisimulation up-to technique.
That is, we define a binary relation R on commands that relates the two commands
and prove that R is a strong low bisimulation up to uL. From Lemma A.1, we then
obtain that the two given commands are strongly low bisimilar.

1. Define R as the symmetric closure of the relation {(skip, Id := Exp) | Id : H}. Let
(skip, Id := Exp) ∈ R and ν, ν′ ∈ Mem be arbitrary with ν =L ν′. From the
operational semantics, we obtain 〈|skip, ν|〉 _ 〈|〈〉, ν|〉. Moreover, there is a µ′ ∈
Mem such that 〈|Id := Exp, ν′|〉 _ 〈|〈〉, µ′|〉. From ν =L ν′ and Id : H, we obtain
ν =L µ′.

Let (Id := Exp, skip) ∈ R and ν, ν′, µ ∈ Mem be arbitrary with ν =L ν′ and
〈|Id := Exp, ν|〉 _ 〈|〈〉, µ|〉. We have 〈|skip, ν′|〉 _ 〈|〈〉, ν′|〉. From ν =L ν′ and Id : H,
we obtain µ =L ν′.

Hence, R is a strong low bisimulation up to uL.
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2. Define R as the symmetric relation {(C1; C2, C′
1; C′

2) | C1 uL C′
1, C2 uL C′

2}.

Let (C1; C2, C′
1; C′

2) ∈ R and ν, ν′, µ ∈ Mem be arbitrary with ν =L ν′ and 〈|C1; C2, ν|〉
_ 〈|C∗, µ|〉 for some C∗ ∈ ~Com. We make a case distinction on C∗ according to the
operational semantics:

(a) C∗ = C2: from the operational semantics, we obtain 〈|C1, ν|〉 _ 〈|〈〉, µ|〉. Since
C1 uL C′

1 and ν =L ν′, there is a µ′ ∈ Mem with 〈|C′
1, ν′|〉 _ 〈|〈〉, µ′|〉 and

µ =L µ′ according to Definition 2.7. From the operational semantics, we
obtain 〈|C′

1; C′
2, ν′|〉 _ 〈|C′

2, µ′|〉with C2 uL C′
2 (by definition of R) and µ =L µ′.

(b) C∗ = 〈C; C2〉V for some C ∈ Com and V ∈ ~Com (possibly V = 〈〉). From
the operational semantics, we obtain 〈|C1, ν|〉 _ 〈|〈C〉V, µ|〉. Since C1 uL C′

1

and ν =L ν′, there are C′ ∈ Com, V ′ ∈ ~Com, and µ′ ∈ Mem with 〈|C′
1, ν′|〉 _

〈|〈C′〉V ′, µ′|〉, C uL C′, V uL V ′, and µ =L µ′. From the operational se-
mantics, we obtain 〈|C′

1; C′
2, ν′|〉 _ 〈|〈C′; C′

2〉V ′, µ′|〉 with (C; C2, C′; C′
2) ∈ R

(follows from C uL C′, C2 uL C′
2, and the definition of R), V uL V ′, and

µ =L µ′.

Hence, R is a strong low bisimulation up to uL.

3. Define R as the symmetric relation

{(if B then C1 else C2, if B′ then C′
1 else C′

2) | B, B′ : L, B ≡ B′, C1 uL C′
1, C2 uL C′

2}

Let (if B then C1 else C2, if B′ then C′
1 else C′

2) ∈ R and ν, ν′ ∈ Mem be arbitrary with
ν =L ν′. We make a case distinction on the value of B in ν:

(a) 〈|B, ν|〉 ↓ False: From ν =L ν′, B, B′ : low, and B ≡ B′, we obtain 〈|B′, ν′|〉 ↓
False. From the operational semantics, we obtain 〈|if B then C1 else C2, ν|〉 _
〈|C2, ν|〉 and 〈|if B′ then C′

1 else C′
2, ν′|〉 _ 〈|C′

2, ν′|〉 with ν =L ν′. By definition
of R, we have C2 uL C′

2.

(b) 〈|B, ν|〉 ↓ True: From ν =L ν′, B, B′ : low, and B ≡ B′, we obtain 〈|B′, ν′|〉 ↓ True.
From the operational semantics, we obtain 〈|if B then C1 else C2, ν|〉 _ 〈|C1, ν|〉
and 〈|if B′ then C′

1 else C′
2, ν′|〉 _ 〈|C′

1, ν′|〉 with ν =L ν′. By definition of R, we
have C1 uL C′

1.

Hence, R is a strong low bisimulation up to uL. �
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Theorem 5.1. If V lL V ′ is derivable for V, V ′ ∈ ~Com, then V uL V ′ holds.

Proof. The proof proceeds by induction on the number of rule applications in the deriva-
tion D of V lL V ′.

Base case: D consists of only a single rule application. We make a case distinction
on this rule.

[Skp] The judgment derived is skip lL skip. Lemma A.2(1) implies skip uL Id := Id
where Id is an arbitrary identifier with Id : H. From symmetry and transitivity of uL,
we obtain skip uL skip.

[SHA1] The judgment derived is skip lL Id := Exp with Id : H. From Lemma A.2(1)
follows skip uL Id := Exp.

[SHA2] The judgment derived is Id := Exp lL skip with Id : H. From Lemma A.2(1)
and the symmetry of uL, we obtain Id := Exp uL skip.

[HA] The judgment derived is Id := Exp lL Id′ := Exp′ with Id, Id′ : H. From
Lemma A.2(1), we obtain skip uL Id := Exp and skip uL Id′ := Exp′. Symmetry and
transitivity of uL imply Id := Exp uL Id′ := Exp′.

[LA] The judgment derived is Id := Exp lL Id := Exp′ with Id : L, Exp, Exp′ : L, and
Exp ≡ Exp′. Lemma A.2(2) implies Id := Exp uL Id := Exp′.

Induction assumption: If D′ is a derivation of W lL W ′ with fewer rule applications
than in D then W uL W ′ holds.

Step case: We make a case distinction on the rule applied at the root of D.

[Seq] The judgment derived is C1; C2 lL C′
1; C′

2 and there are derivations D1 and D2

of C1 lL C′
1 and C2 lL C′

2, respectively. From the induction assumption, we obtain
C1 uL C′

1 and C2 uL C′
2. Lemma A.2(3) implies C1; C2 uL C′

1; C′
2.

[Par] The judgment derived is 〈C1, . . . , Cn〉 lL 〈C′
1, . . . , C′

n〉 and there are derivations
Di of Ci lL C′

i for i = 1, . . . , n. From the induction assumption, we obtain Ci uL C′
i for

i = 1, . . . , n. From Definition 2.7, we obtain 〈C1, . . . , Cn〉 uL 〈C′
1, . . . , C′

n〉.
[Frk] The judgment derived is fork(C1V1) lL fork(C′

1V ′
1) and there are derivations

D1 and D2 of C1 lL C′
1 and V1 lL V ′

1, respectively. From the induction assumption, we
obtain C1 uL C′

1 and V1 uL V ′
1. Lemma A.2(4) implies fork(C1V1) uL fork(C′

1V ′
1).

[Whl] The judgment derived is while B do C1 lL while B′ do C′
1 with B, B′ : L,

B ≡ B′, and there is a derivation D1 of C1 lL C′
1. Lemma A.2(5) implies then that

while B do C1 uL while B′ do C′
1.

[LCond] The judgment derived is if B then C1 else C2 lL if B′ then C′
1 else C′

2 with
B, B′ : L, B ≡ B′, and there are derivations D1 and D2 of C1 lL C′

1 and C2 lL C′
2,
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respectively. Lemma A.2(6) implies if B then C1 else C2 uL if B′ then C′
1 else C′

2.

[SHCond1] The judgment derived is skip; C1 lL if B′ then C′
1 else C′

2 with B′ : H
and there are derivations D1 and D2 of C1 lL C′

1 and C1 lL C′
2, respectively. From

the induction assumption, we obtain C1 uL C′
1 and C1 uL C′

2. Lemma A.2(7) implies
skip; C1 uL if B′ then C′

1 else C′
2.

[SHCond2] The judgment derived is if B then C1 else C2 lL skip; C′
1 with B : H

and there are derivations D1 and D2 of C1 lL C′
1 and C2 lL C′

1, respectively. From
the induction assumption, we obtain C1 uL C′

1 and C2 uL C′
1. Symmetry of uL and

Lemma A.2(7) imply skip; C′
1 uL if B then C1 else C2. From the symmetry of uL, we

obtain if B then C1 else C2 uL skip; C′
1.

[HAHCond1] The judgment derived is Id := Exp; C1 lL if B′ then C′
1 else C′

2 with Id :
H, B′ : H, and there are derivations D1 and D2 of C1 lL C′

1 and C1 lL C′
2, respectively.

From skip; C1 uL if B′ then C′
1 else C′

2 (see Case [SHCond1]), Id := Exp; C1 uL skip; C1 (see
Case [SHA2]), and transitivity of uL, we obtain Id := Exp; C1 uL if B′ then C′

1 else C′
2.

[HAHCond2] The judgment derived is if B then C1 else C2 lL Id′ := Exp′; C′
1 with Id′ :

H, B : H, and there are derivations D1 and D2 of C1 lL C′
1 and C2 lL C′

1, respectively.
From if B then C1 else C2 uL skip; C′

1 (see Case [SHCond2]), skip; C′
1 uL Id′ := Exp′; C′

1 (see
Case [SHA1]), and transitivity of uL, we obtain if B then C1 else C2 uL Id′ := Exp′; C′

1.

[HCond] The judgment derived is if B then C1 else C2 lL if B′ then C′
1 else C′

2 with
B, B′ : H and there are derivationsD1, D2, andD3 of C1 lL C′

1, C1 lL C′
2, and C1 lL C2,

respectively. From the induction assumption, we obtain C1 uL C′
1, C1 uL C′

2, and
C1 uL C2. Symmetry and transitivity of uL implies C1 uL C1. From if B then C1 else C2 uL

skip; C1 (see Case [SHCond2]), skip; C1 uL if B′ then C′
1 else C′

2 (see Case [SHCond1]), and
transitivity of uL, we then obtain if B then C1 else C2 uL if B′ then C′

1 else C′
2.

A.2 Proof of Theorem 5.2

For the proof of Theorem 5.2, we first strengthen our notion of bisimulation. We then
prove a lemma that shows that this relation is a congruence by using the up-to tech-
nique. With the help of this lemma, the proof Theorem 5.2 is a straightforward induc-
tion over a program’s term structure.

Definition A.2. The pointwise weak possibilistic bisimulation '̇ is the union of all symmet-
ric relations R on command vectors V, V ′ ∈ ~Com of equal size, i.e. V = 〈C1, . . . , Cn〉 and
V ′ = 〈C′

1, . . . , C′
n〉, such that whenever V R V ′ then for all states ν, µ and all i ∈ {1 . . . n}
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and all thread pools W, there is a thread pool W ′ with

〈|Ci, ν|〉 _ 〈|W, µ|〉 ⇒ (〈|C′
i , ν|〉 _∗ 〈|W ′, µ|〉 ∧W R W ′)

and V = 〈〉 =⇒ 〈|V ′, ν|〉 →∗ 〈|〈〉, ν|〉.
(A.2)

Observe that Property A.2 also holds for the entire relation '̇. Furthermore, for two
thread pools V = 〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C′
n〉 we have V '̇ V ′ if and only if for

all i ∈ {1, . . . , n} we have Ci '̇ C′
i .

Lemma A.3. V '̇ V ′ ⇒ V ' V ′

Proof. Follows directly from Definitions 5.2 and A.2 and the operational semantics for
thread pools.

Definition A.3. A binary relation R on Com is a pointwise weak possibilistic bisimulation
up to '̇ if R is symmetric and

∀C, C′, C1, . . . , Cn ∈ Com : ∀ν, µ ∈ Mem :
(C R C′ ∧ 〈|C, ν|〉 _ 〈|〈C1, . . . , Cn〉, µ|〉)
⇒∃C′

1, . . . , C′
n ∈ Com : (〈|C′, ν|〉 _∗ 〈|〈C′

1, . . . , C′
n〉, µ|〉

∧ ∀i ∈ {1, . . . , n} : Ci(R∪ '̇)C′
i).

Lemma A.4. If R is a pointwise weak possibilistic bisimulation up to '̇, then we have R⊆ '̇.

Proof. Let Q = (R∪ '̇)↑, where ↑ denotes the pointwise lifting of a relation on com-
mands to command vectors (here, '̇ is viewed as a relation on commands). It is suf-
ficient to show Q ⊆ '̇. To this end, we show that Q satisfies condition A.2 in Def-
inition A.2, and is therefore contained in '̇, the union of all such relations. Let V =
〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C′
n〉 and (V, V ′) ∈ Q. If n = 0, then we have V = V ′ = 〈〉

and the second part of condition A.2 is fulfilled. Suppose n > 0 and 〈|V, ν|〉 _ 〈|W, µ|〉.
By definition of the operational semantics, we know that there is i ∈ {1, . . . , n} with
〈|Ci, ν|〉 _ 〈|〈Ci,1, . . . , Ci,m〉, µ|〉 and W = 〈C1, . . . , Ci−1, Ci,1, . . . , Ci,m, Ci+1, . . . , Cn〉. We
distinguish between the cases (Ci, C′

i) ∈'̇ and (Ci, C′
i) ∈ R.

(Ci, C′
i)∈'̇: By Definition A.2, there are C′

i,1, . . . , C′
i,m with 〈|C′

i , ν|〉_∗ 〈|〈C′
i,1, . . . , C′

i,m〉, µ|〉
and 〈Ci,1, . . . , Ci,m〉 '̇ 〈C′

i,1, . . . , C′
i,m〉. From Definition A.2 it follows that Ci,j '̇ C′

i,j

holds, for all j ∈ {1, . . . , m}.
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(Ci, C′
i)∈R: By Definition A.3, there are C′

i,1, . . . , C′
i,m with 〈|C′

i , ν|〉 _∗ 〈|〈C′
i,1, . . . , C′

i,m〉, µ|〉
and Ci,j(R∪ '̇)C′

i,j holds, for all j ∈ {1, . . . , m}.

With W ′ = 〈C′
1, . . . , C′

i−1, C′
i,1, . . . , C′

i,m, C′
i+1, . . . , C′

n〉 we have 〈|V ′, ν|〉 _∗ 〈|W ′, µ|〉 and
(W, W ′) ∈ Q. As '̇ is defined to be the union of all symmetric relations with the
condition A.2, we see Q ⊆ '̇.

Lemma A.5.

1. If C1 '̇ C′
1 and C2 '̇ C′

2 then C1; C2 '̇ C′
1; C′

2.

2. If C1 '̇ C′
1 and V2 '̇ V ′

2 then fork(C1V2) '̇ fork(C′
1V ′

2).

3. If C1 '̇ C′
1 then while B do C1 '̇ while B do C′

1.

4. If C1 '̇ C′
1 and C2 '̇ C′

2 then if B then C1 else C2 '̇ if B then C′
1 else C′

2.

5. If C1 '̇ C′
1, . . . , Cn '̇ C′

n then 〈C1, . . . , Cn〉 '̇ 〈C′
1, . . . , C′

n〉.

Proof. We proceed as in the proof of Lemma A.2, only by using pointwise weak possi-
bilistic bisimulations up to '̇ instead of strong low-bisimulations.

Theorem 5.2. 1. For all preserving substitutions σ, ρ that are ground for V ∈ ~ComV ,
we have σ(V) ' ρ(V).

2. For each lifting V ′ of a ground program V ∈ ~Com and each preserving substitu-
tion σ with σ(V ′) ground, we have σ(V ′) ' V.

Proof. We prove the first assertion for pointwise weak possibilistic bisimulations (rather
than weak possibilistic bisimulations) by induction on the term structure of vectors of
length 1, i.e. V ∈ ComV . By Lemma A.5(5), the assertion is then lifted to arbitrary vec-
tors in ~ComV , and with Lemma A.3 the assertion follows. Let σ, ρ be substitutions that
are preserving and ground for V.

1. Suppose V is skip or an assignment. Then σ(V) = ρ(V) = V, and the assertion
follows by reflexivity of '̇.

2. Suppose V is of the form α; C′ or C′; α. By induction hypothesis, we have σ(C′) '̇
ρ(C′). σ and ρ are preserving and ground for α, so we see σ(α) '̇ ρ(α). From
Lemma A.5(1), σV '̇ ρV follows.
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3. Suppose V = C1; C2 with C1, C2 ∈ ComV . By induction hypothesis, we have
σC1 '̇ ρC1 and σC2 '̇ ρC2. From Lemma A.5(1), σV '̇ ρV follows

4. Suppose V = while B do C′ with C′ ∈ ComV . By induction hypothesis, we have
σC′ '̇ ρC′. From Lemma A.5(3), σV '̇ ρV follows.

5. Suppose V = if B then C1 else C2 with C1, C2 ∈ ComV . By induction hypothesis,
we have σC1 '̇ ρC1 and σC2 '̇ ρC2. From Lemma A.5(4), σV '̇ ρV follows.

6. Suppose V = fork(C0〈C1, . . . , Cn〉) with Ci ∈ ComV for i ∈ {0, . . . , n}. By induc-
tion hypothesis, we have σCi '̇ ρCi for i ∈ {0, . . . , n}. From Lemma A.5(5), we
first obtain σ〈C1, . . . , Cn〉 '̇ ρ〈C1, . . . , Cn〉 and then, by Lemma A.5(2), σV '̇ ρV.

The second assertion follows from part 1 of the theorem by instantiating ρ with a pro-
jection π.

A.3 Proof of Lemma 5.1

For the proof of Lemma 5.1, we first state and prove two lemmas that simplify reason-
ing with lL on ComV .

Lemma A.6. If V1 lL V2 holds for two programs V1, V2 ∈ ~ComV then σV1 lL σV2 holds for
each substitution σ that is preserving (but not necessarily ground).

Proof. Given an arbitrary substitution η that is preserving and ground for σV1 and σV2,
we obtain η(σV1) lL η(σV2) from V1 lL V2, Definition 5.4, and the fact that η ◦ σ

is preserving and ground for V1 and V2. Since η was chosen arbitrarily, σV1 lL σV2

follows.

Lemma A.7. Let V, V ′, V0, V ′
0, . . . , Vn, V ′

n ∈ ~ComV be programs that may contain meta-
variables. If Vi lL V ′

i holds for each i ∈ {0, . . . , n} according to Definition 5.4 and V lL V ′

can be syntactically derived from the assumptions V0 lL V ′
0, . . . , Vn lL V ′

n with the rules in
Figure 5.1 then V lL V ′ holds according to Definition 5.4.

Proof. The proof proceeds by induction on the size of D, the derivation of V lL V ′

from V0 lL V ′
0, . . . , Vn lL V ′

n.

Base case: If D consists of zero rule applications, then V lL V ′ equals one of the
assumptions.
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Induction assumption: The proposition holds for every derivation with less than n
rule applications.

Step case: Assume D consists of n rule applications. We make a case distinction on
the last rule applied in D. Here, we consider only the case where [Seq] is the last rule
applied. The reasoning is independent of the structure of the rule [Seq], and so the
cases for the other rules can be shown along the same lines.

Let C1, C′
1, C2, C′

2 ∈ ComV be arbitrary with C1 lL C′
1 and C2 lL C′

2. Let σ be an
arbitrary substitution that is preserving and ground for C1, C′

1, C2, C′
2. From C1 lL C′

1,
C2 lL C′

2, and Definition 5.4 we obtain σC1 lL σC′
1 and σC2 lL σC′

2. An application
of [Seq] (for ground programs) yields (σC1; σC2) lL (σC′

1; σC′
2). Since σ(C1; C2) =

(σC1; σC2) lL (σC′
1; σC′

2) = σ(C′
1; C′

2), and σ was chosen freely, we obtain C1; C2 lL

C′
1; C′

2 from Definition 5.4.

Lemma 5.1. If V ↪→ V ′ : S can be derived then V ′ lL S holds.

Proof. We prove the proposition by induction on the minimal height of a given deriva-
tion D of V ↪→ V ′ : S.

Base case: D consists of a single rule application. We perform a case distinction on
this rule:

[TVar] We have V = V ′ = S = α for some meta-variable α ∈ V . Let σ be an arbitrary
substitution that is preserving and ground for α. As σα is a command in StutV that
is free of meta-variables (i.e. a sequential composition of skip statements), we obtain
σα lL σα from [Skp] and [Seq] in Figure 5.1. Hence, α lL α holds.

[TSkp] We have V = V ′ = S = skip. From [Skp] in Figure 5.1, we obtain skip lL skip.
[THA] We have V = V ′ = Id := Exp and S = skip with Id : H. From [SHA2] in

Figure 5.1, we obtain Id := Exp lL skip.
[TLA] We have V = V ′ = S = Id := Exp with Id : L and Exp : L. From [LA] in

Figure 5.1, we obtain Id := Exp lL Id := Exp.
Induction assumption: For any derivation D′ of a judgment W ↪→ W ′ : S′ with height

less than the height of D, W ′ lL S′ holds.
Step case: We make a case distinction on the rule applied at the root of D.
[TSeq] We have V = C1; C2, V ′ = C′

1; C′
2, and S = S1; S2 with C1 ↪→ C′

1 : S1 and
C2 ↪→ C′

2 : S2. By induction assumption, C′
1 lL S1 and C′

2 lL S2 hold. An application
of [Seq] in Figure 5.1 (observe Lemma A.7) yields C′

1; C′
2 lL S1; S2.

[TPar] We have V = 〈C1, . . . , Cn〉, V ′ = 〈C′
1, . . . , C′

n〉, and S = 〈S1, . . . , Sn〉 with
Ci ↪→ C′

i : Si for all i ∈ {1, . . . , n}. By induction assumption, C′
i lL Si holds for all

i ∈ {1, . . . , n}. Application of [Par] in Figure 5.1 yields 〈C′
1, . . . , C′

n〉 lL 〈S1, . . . , Sn〉.
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[TFrk] We have V = fork(C1V2), V ′ = fork(C′
1V ′

2), and S = fork(S1S2) with C1 ↪→
C′

1 : S1 and V2 ↪→ V ′
2 : S2. By induction assumption, C′

1 lL S1 and V ′
2 lL S2 hold. An

application of [Frk] in Figure 5.1 yields fork(C′
1V ′

2) lL fork(S1S2).
[TWhl] We have V = while B do C1, V ′ = while B do C′

1, and S = while B do S1 with
B : L and C1 ↪→ C′

1 : S1. By induction assumption, C′
1 lL S1 holds. An application of

[Whl] in Figure 5.1 yields while B do C′
1 lL while B do S1.

[TLCond] We have V = if B then C1 else C2, together with V ′ = if B then C′
1 else C′

2

and S = if B then S1 else S2 with B : L, C1 ↪→ C′
1 : S1, and C2 ↪→ C′

2 : S2. By induction
assumption, C′

1 lL S1 and C′
2 lL S2 hold. An application of [LCond] in Figure 5.1

yields if B then C′
1 else C′

2 lL if B′ then S1 else S2.
[THCond] We have V = if B then C1 else C2, together with V ′ = if B then σC′

1 else σC′
2

and S = skip; σS1 with B : H, C1 ↪→ C′
1 : S1, C2 ↪→ C′

2 : S2, and σ ∈ U ({S1l?
LS2}).

By induction assumption, C′
1 lL S1 and C′

2 lL S2 hold. As σ is preserving, we ob-
tain σC′

1 lL σS1 and σC′
2 lL σS2 from Lemma A.6. Then we conclude σC′

2 lL σS1

from σC′
2 lL σS2, σS1 lL σS2 (follows from σ ∈ U ({S1l?

LS2})), and from the fact
that lL is symmetric and transitive. An application of [SHCond2] in Figure 5.1 yields
if B then σC′

1 else σC′
2 lL skip; σS1.

A.4 Proof of Lemma 5.2

We formally define const(C) = |C|skip + ∑Exp,Id:H |C|Id := Exp, where |C|D denotes the
number of occurrences of D as a subterm of C.

Lemma 5.2. For two commands C1 and C2 in PadV , we have C1 lL C2 if and only if
const(C1) = const(C2) and ∀α ∈ V : |C1|α = |C2|α.

Proof. (⇒) Suppose const(C1) 6= const(C2). Let σ be the substitution mapping all vari-
ables in C1 and C2 to ε. The judgment σC1 lL σC2 is not derivable with the rules
in Figure 5.1, contradicting the assumption C1 lL C2, as σ is preserving. Assume
now const(C1) = const(C2) and |C1|α 6= |C2|α for some meta-variable α ∈ V . Let σ be
the substitution mapping α to skip and all other variables in C1 and C2 to ε. We have
const(σC1) 6= const(σC2) and thus a contradiction to the assumption C1 lL C2.

(⇐) Let σ be an arbitrary preserving substitution that is ground for C1 and C2. From
the assumption const(C1) = const(C2) and |C1|α = |C2|α follows that const(σ(C1)) =
const(σ(C2)) holds. It is not difficult to see that σ(C1) lL σ(C2) is derivable with the
rules from Figure 5.1 and hence, by Definition 5.4, C1 lL C2 holds. �
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A.5 Proof of Lemma 5.3

Lemma 5.3. Let Vi ∈ ~Com, with liftings V ′
i ∈ ~ComV and V∗

i ∈ ~MglV for i = 1, 2. Suppose
V∗

1 (V∗
2 ) shares no meta-variables with V ′

1, V ′
2, and V∗

2 (V ′
1, V ′

2, and V∗
1 ). Then we have

U ({V ′
1l

?
LV ′

2}) 6= ∅ implies U ({V∗
1l

?
LV∗

2 }) 6= ∅ .

More precisely, we can find a ρ ∈ U ({V∗
1l

?
LV∗

2 }) with dom(ρ) ⊆ var(V∗
1 ) ∪ var(V∗

2 ) and
var(ran(ρ)) ⊆ var(V ′

1) ∪ var(V ′
2).

Proof. Suppose σ is a preserving substitution with σV ′
1 lL σV ′

2. We will inductively
construct preserving substitutions ρ1 with ρ1V∗

1 lL σV ′
1, and ρ2 with ρ2V∗

2 lL σV ′
2

with the property dom(ρi) ⊆ var(V∗
i ) and var(ran(ρi)) ⊆ var(V ′

i ) for i = 1, 2. The meta-
variables in V∗

1 and V∗
2 are disjoint, so ρ = ρ1 ∪ ρ2 is well–defined and a unifier of

V∗
1l

?
LV∗

2 because of ρV∗
1 lL σV ′

1 lL σV ′
2 lL ρV∗

2 . We prove the assertion by induction
on the term structure of V∗

1 ∈ ~MglV , starting with V∗
1 = C∗

1 ∈ MglV (and hence V1 =
C1 ∈ Com and V ′

1 = C′
1 ∈ ComV ).

Suppose C∗
1 ∈ PadV ∩ MglV . Then by definition of MglV , C∗

1 contains at least one
meta-variable α. C′

1 is also a lifting of C1, so it must be in PadV . Let α1, . . . , αn be the
meta-variables in C′

1. Define ρ(α) := σ(α1); . . . ; σ(αn), and set ρ(Y) = ε for all Y 6= α

occuring in C∗
1 . C∗

1 and C′
1 are both liftings of C1, so they contain the same number

of skips and assignments to high variables. By definition of ρ, we see that σC′
1 and

ρC∗
1 contain the same meta-variables and the same number of constants. Applying

Lemma 5.2, we can conclude that ρC∗
1 lL σC′

1. Furthermore, dom(ρ) ⊆ var(C∗
1) and

var(ran(ρ)) ⊆ var(C′
1) are satisfied.

Suppose C∗
1 = P; if B then C∗

1,1 else C∗
1,2; C∗. The command C′

1 is also a lifting of C1,
so it can be written as P′; if B then C′

1,1 else C′
1,2; C′, with (possibly empty) commands

P′, C′.
If B is a low conditional, we inductively construct substitutions ρ1, ρ2, ρ3, ρ4 such

that ρ1P lL σP′, ρ2C∗
1,1 lL σC′

1,1, ρ3C∗
1,2 lL σC′

1,2 and ρ4C∗ lL σC′. The domains of
the ρi are disjoint by the hypothesis that dom(ρi) is a subset of the meta-variables of the
corresponding subcommand and the assumption that every meta-variable occurs only
once in C∗

1 , so ρ = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4 is well-defined. Using Lemma A.7, we can conclude
ρC∗

1 = ρ1P; if B then ρ2C∗
1,1 else ρ3C∗

1,2; ρ4C∗ lL σP′; if B then σC′
1,1 else σC′

1,2; σC′ lL σC′
1.

Furthermore, dom(ρ) ⊆ var(C∗
1) and var(ran(ρ)) ⊆ var(C′

1) are satisfied.
If B is a high conditional, the precondition σC′

1 lL σC′
2 together with the definition

of lL on high conditionals shows that σC′
1,1 lL σC′

1,2 holds. After applying the induc-
tion hypothesis, we obtain ρ2,1 and ρ2,2 with ρ2,1C∗

1,1 lL σC′
1,1 lL σC′

1,2 lL ρ2,2C∗
1,2
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and ρ1, ρ3 with ρ1P lL σP′ and ρ3C∗ lL σC′. With ρ = ρ1 ∪ ρ2,1 ∪ ρ2,2 ∪ ρ3, we
see that ρC∗

1 is equal to ρ1P; if B then ρ2,1C∗
1,1 else ρ2,2C∗

1,2; ρ3C∗ and, therefore, ρC∗
1 lL

ρ1P; skip; ρ2,1C∗
1,1; ρ3C∗ lL σP′; skip; σC′

1,1; σC′ lL σP′; if B then σC′
1,1 else σC′

1,2; σC′ lL

σC′
1. Furthermore, dom(ρ) ⊆ var(C∗

1) and var(ran(ρ)) ⊆ var(C′
1) are satisfied.

The remaining induction steps for MglV and the lifting to ~MglV can be treated in the
same way as the low conditional case.

A.6 Proof of Lemma 5.4

Lemma 5.4. Let V ∈ ~Com and V ∈ ~ComV . If V ⇀ V can be derived, then

1. V is a lifting of V and

2. V ∈ ~MglV .

Proof. The proof of Assertion 1 is a straightforward inductive argument over the struc-
ture of the derivation of V ⇀ V and an inspection of each rule in Figure 5.3.

For the proof of Assertion 2, we proceed by induction on the term structure of
V ∈ ~Com: First, suppose V = C ∈ Com.

If C = skip, we have C ⇀ skip; X, which is in MglV . The same holds for C = Id := Exp
with Id : H.

If C = Id := Exp with Id : L, we have C ⇀ X; Id := Exp; Y, which is in MglV .

If C = while B do C′, we get C ⇀ C = X; while B do C′; Y with C′ ⇀ C′. By induction
hypothesis, C′ ∈ MglV , and by definition of MglV we have C ∈ MglV .

If C = fork(C′V), we have C ⇀ C = X; fork(C′V); Y with C′ ⇀ C′ and V ⇀ V. By
induction hypothesis, C′ ∈ MglV , and V ∈ ~MglV and by definition of MglV we have
C ∈ MglV .

If C = if B then C1 else C2, we have C ⇀ C with C = X; if B then C1 else C2; Y with
C1 ⇀ C1 and C2 ⇀ C2. By induction hypothesis, C1, C2 ∈ MglV , and by definition of
MglV we have C ∈ MglV .

If C = C1; C2 let C1 ⇀ C1, and let C2 ⇀ C2. By induction hypothesis, C1, C2 ∈ MglV .
As C1 ∈ MglV , we can write it as (implicit induction on MglV ) C1 = C′

1; P; X for a
P ∈ PadV and a meta-variable X ∈ V . Observe that P; C2 ∈ MglV , and thus C′

1; P; C2 ∈
MglV . This is what we wanted, as we have C1; C2 ⇀ C′

1; P; C2.

If V = 〈C1, . . . , Cn〉 ∈ ~Com, we have V ⇀ V with V = 〈C1, . . . , Cn〉 with Ci ⇀ Ci for
i = 1, . . . , n. By induction hypothesis, C1, . . . , Cn ∈ MglV , and thus V ∈ ~MglV .
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The assertion that each meta-variable occurs at most once follows from the require-
ment that each meta-variable inserted while lifting must be fresh.

A.7 Proof of Theorem 5.4

Theorem 5.4. Let Vi ∈ ~Com with liftings V ′
i , Vi ∈ ~ComV for i = 1, 2. Suppose V1 (V2)

shares no meta-variables with V ′
1, V ′

2, and V2 (V ′
1, V ′

2, and V1). If V1 ⇀ V1 and V2 ⇀ V2

can be derived, then

1. U ({V ′
1l

?
LV ′

2}) 6= ∅ implies U ({V1l?
LV2}) 6= ∅ , and

2. U ({V ′
1l

?
LV ′

1}) 6= ∅ implies U ({V1l?
LV1}) 6= ∅.

Proof. 1. From Lemma 5.4, it follows that V1, V2 ∈ ~MglV . The claim then follows
immediately by applying Lemma 5.3.

2. From Lemma 5.4, it follows that V ∈ ~MglV , hence it suffices to show the assertion
for an arbitrary V∗ ∈ ~MglV . We will inductively construct a substitution ρ, with
ρV∗l?

LρV∗ and dom(ρ) ⊆ var(V∗), starting with V∗ = C∗ ∈ MglV and V ′ = C′ ∈
ComV

Suppose C∗ ∈ PadV . The identity is then in U ({C∗l?
LC∗}).

Suppose C∗ = P; Id := Exp; C∗
1 with Id : L. C′ is also a lifting of C, so C′ =

P′; Id := Exp; C′
1 with possibly empty (i.e., equal to ε) P′, C′. From σC′ lL σC′,

and the definition of lL we know that Exp : L and U ({C′
1l

?
LC′

1}) 6= ∅. We apply
induction hypothesis to obtain ρ ∈ U ({C∗

1l
?
LC∗

1). From Lemma A.7, we obtain
ρC∗ lL ρC∗.

Suppose C∗ = P; if B then C∗
1 else C∗

2 ; C∗
3 with B : L. C′ is also a lifting of C, so

C′ = P′; if B then C′
1 else C′

2; C′
3. From σC′ lL σC′ and the definition of lL we

know that U ({C′
il

?
LC′

i}) 6= ∅ for i = 1, 2, 3. We apply induction hypothesis to
obtain ρi ∈ U ({C∗

i l
?
LC∗

i }) for i = 1, 2, 3. ρ = ρ1 ∪ ρ2 ∪ ρ3 is well–defined as the
domains are pairwise disjoint, and ρ ∈ U ({C∗l?

LC∗}).

Suppose C∗ = P; if B then C∗
1 else C∗

2 ; C∗
3 with B : H. We then know that C′ =

P′; if B then C′
1 else C′

2; C′
3 because both C′ and C∗ are liftings of C. From σC′ lL

σC′ and the definition oflL we get σC′
1 lL σC′

2. By Lemma 5.3, we obtain ρ1 with
ρ1C∗

1 lL ρ1C∗
2 (note that every meta-variable occurs at most once in (C∗

1 , C∗
2)).

Applying induction hypothesis to P and C∗
3 , we obtain ρ0 with ρ0P lL ρ0P and
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ρ2 with ρ2C∗
3 lL ρ2C∗

3 . With ρ = ρ0 ∪ ρ1 ∪ ρ2, we have ρC∗ lL ρC∗, which is what
we wanted.

The remaining induction steps for MglV and the lifting to ~MglV can be treated in
the same way as the low conditional. �

A.8 Proof of Lemma 5.5

Lemma 5.5. Let V1, V2 ∈ ~SliceV and assume that no meta-variable occurs more than
once in (V1, V2). If V1l?

LV2 :: η, then

1. η ∈ U ({V1l?
LV2}), and

2. η is idempotent, and

3. dom(η) ∪ var(ran(η)) ⊆ var(V1) ∪ var(V2), and

4. V1, V2 ∈ ~MglV implies ηV1, ηV2 ∈ ~MglV ,

where var(·) returns the set of meta-variables occurring in a command or a set of com-
mands in ~ComV .

Proof. For proving Assertions 1, 2, and 3, we proceed by structural induction on the
derivation tree D of the judgment V1l?

LV2 :: η. For this, note that assertion 2 is equiva-
lent to dom(η) ∩ var(ran(η)) = ∅.

It is not difficult to see that the application of the rules in Figure 5.5 preserves As-
sertions 2 and 3. Hence, we focus on proving Assertion 1.

If D consists of an application of the rule [UVar1], we have V1 = α and V2 = C.
The assertion follows, as α does not occur in var(C) by assumption. [UVar2] follows
similarly.

If the root of D is an application of rule [USeq1], we have V1 = α; C1 and V2 = C2,
and C1l?

LC2 :: η. By hypothesis, ηC1 lL ηC2 holds. (η ∪ {α\ε})α; C1 = ηC1 lL ηC2 lL

(η ∪ {α\ε})C2, as α does not occur in C1, C2. [USeq′1] follows similarly.

If the root of D is an application of rule [USeq2], we have V1 = skip; C1 and V2 =
skip; C2, and C1l?

LC2 :: η. By hypothesis, ηC1 lL ηC2 holds. Then, by Lemma A.7 we
also have η(skip; C1) lL η(skip; C2).

We prove Assertions 1, 2, and 3 for the rules in Figure 5.4 for the example of the
rule [UCond]. The remaining cases can be proved along the same lines.
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If the root of D is the application of [UCond], we have V1 = if B1 then C1 else C2 and
V2 = if B2 then C′

1 else C′
2, together with B1 ≡ B2 and C1l?

LC′
1 :: η1, C2l?

LC′
2 :: η2. By

hypothesis, we have ηi ∈ U ({Cil?
LC′

i}), and dom(ηi) ∪ var(ran(ηi)) ⊆ var(Ci) ∪ var(C′
i)

for i = 1, 2. As var(C1) ∪ var(C′
1) and var(C2) ∪ var(C′

2) are disjoint by hypothesis,
η = η1 ∪ η2 is well-defined, dom(η) ∩ var(ran(η)) = ∅, and dom(η) ∪ var(ran(η)) ⊆
var(V1) ∪ var(V2) hold. From Lemma A.7, we see that η is indeed a unifier of V1 and
V2.

For proving Assertion 4, we proceed by induction on the term structure of V1. We
treat the case of commands V1 = S1 and V2 = S2 ∈ SliceV first.

Suppose S1 ∈ StutV . Only the rules [UVar1],[UVar2],[USeq1], [USeq′1] and [USeq2]
apply, so S2 ∈ StutV . As S1, S2 ∈ MglV , we see that both commands contain a terminal
meta-variable, i.e., a meta-variable as the rightmost subterm. The two base cases for the
derivation, [UVar1] and [UVar2], map the meta-variable at the end of one command to
the respective other command. Hence, both ηS1 and ηS2 have terminal meta-variables.
As (S1, S2) contains every meta-variable only once, the same holds for ηS1 and ηS2,
and thus they are elements of MglV .

Suppose S1 = P1; if B1 then S1,1 else S1,2; S1,3 with B : L. From S1l?
LS2 :: η and

the rules [UCond] [USeq3] and [USeq4] in Figures 5.4 and 5.5, we obtain that S2 =
P2; if B2 then S2,1 else S2,2; S2,3, with B1≡B2 and P1l?

LP2 :: η0, S1,1l?
LS2,1 :: η1, S1,2l?

LS2,2 ::
η2, and S1,3l?

L S2,3 :: η3 are derivable. By induction hypothesis, we have η0P1, η1S1,1,
η2S1,2, η3S1,3 ∈ MglV . With η = η0 ∪ η1 ∪ η2 ∪ η3 and the fact that the domains
and variable ranges of the ηi are mutually disjoint for i ∈ {0, 1, 2, 3}, we conclude
ηS1 = η0P1; if B1 then η1S1,1 else η2S1,2; η3S1,3, which is in MglV as it contains every
meta-variable at most once.

All other constructors and the lifting to command vectors can be treated in the same
way as the low conditional.

A.9 Proof of Theorem 5.5

The proof of Theorem 5.5 essentially proceeds by induction on the term structure of
W. The main technical difficulty in the proof lies in showing that if the two branches
C1, C2 of a conditional with high guard, with Ci ↪→′ C′

i : Si for i = 1, 2, unify, then we
can also unify the corresponding slices, i.e. S1l?

LS2 :: η. To prove this, we proceed in
two steps:

1. We show that S1 and S2 are structurally equivalent “modulo” commands in PadV ,
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P, P′ ∈ StutV ∪ {ε}
P .= P′

P, P′ ∈ StutV ∪ {ε} C .= C′ Id : L Exp1 ≡ Exp2

P; Id := Exp1; C .= P′; Id := Exp2; C′

P, P′ ∈ StutV ∪ {ε} C1
.= C′

1 C2
.= C′

2 V .= V ′

P; fork(C1V); C2
.= P′; fork(C′

1V ′); C′
2

C1
.= C′

1, . . . , Cn
.= C′

n

〈C1, . . . , Cn〉
.= 〈C′

1, . . . , C′
n〉

P, P′ ∈ StutV ∪ {ε} Ci
.= C′

i i = 1, 2, 3 B1 ≡ B2

P; if B1 then C1 else C2; C3
.= P′; if B2 then C′

1 else C′
2; C′

3

P, P′ ∈ StutV ∪ {ε} C1
.= C′

1 C2
.= C′

2 B1 ≡ B2

P; while B1 do C1; C2
.= P′; while B2 do C′

1; C′
2

Figure A.1: Resembling commands

and that they are in MglV (Definition A.4, Lemma A.8).

2. We show that we can unify every two structurally equivalent slices, given that
they are elements of MglV (Lemma A.10.1)

Lemma A.9 and Lemma A.10.2 are rather technical and will be needed during the
proof. We first formulate the above steps in terms of definitions and lemmata, before
we proceed with the proof of Theorem 5.5.

To simplify the atomic treatment of subcommands in StutV of commands in SliceV
in inductive arguments, we introduce the language Slice+

V (note the resemblance to the
definition of MglV ). We define the set Slice+

V by the following grammar:

L ::= P | P; Idl := Exp; L | P; if B then L1 else L2; L| P; while B do L1; L | P; fork(L1V); L ,

where L, L1, L2 are placeholders for commands in Slice+
V , V is a placeholder for a com-

mand vector in ~Slice+
V , and P is a placeholder for a command in StutV ∪ {ε}. By a

straightforward induction one proves that SliceV ⊆ Slice+
V .

Definition A.4. The binary relation .= on ~Slice+
V is defined as the reflexive, symmetric

and transitive closure of the relation inductively defined in Figure A.1. We call com-
mands V, V ′ ∈ ~MglV with V .= V ′ resembling.

Lemma A.8. Let C, C1, C2 ∈ MglV . Then the following assertions hold:

1. C ↪→′ C′ : S implies S ∈ MglV ∩ SliceV and var(S) ⊆ var(C).

2. U ({C1l?
LC2}) 6= ∅ and Ci ↪→′ C′

i : Si for i = 1, 2 implies S1
.= S2.
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Proof. 1. It is easy to see that S ∈ SliceV holds, and we concentrate on containment
in MglV . We proceed by induction on the term structure of C ∈ MglV .

Suppose C ∈ PadV ∩MglV . By definition of MglV , C has a terminal meta-variable.
Then clearly S ∈ MglV as it contains a terminal meta-variable and no assign-
ments. Furthermore, var(S) ⊆ var(C) is fulfilled.

Suppose now C = P; if B then C1 else C2; C3 with B : L and C ↪→′ C′ : S. Then by
definition of ↪→′ we have P ↪→′ P′ : S0, C1 ↪→′ C′

1 : S1, C2 ↪→′ C′
2 : S2 and C3 ↪→′

C′
3 : S3. By induction hypothesis, S0, S1, S2, S3 ∈ MglV and the condition on the

meta-variables holds. By definition of MglV , S = S0; if B then S1 else S2; S3 ∈ MglV ,
and var(S) ⊆ var(C) holds.

Suppose now C = P; if B then C1 else C2; C3 with B : H. We have C ↪→′ C′ :
S, hence by definition of ↪→′ we have P ↪→′ P′ : S0, C1 ↪→′ C′

1 : S1, C2 ↪→′

C′
2 : S2 and C3 ↪→′ C′

3 : S3 and also S1 lL S2 :: η for some η. By induction
hypothesis, S1, S2, S3 ∈ MglV and var(Si) ⊆ var(Ci). Hence (S1, S2) contains every
meta-variable at most once. With Lemma 5.5.4 we see that ηS1 ∈ MglV , and
every meta-variable occurs at most once in ηS1. From Lemma 5.5.3, it follows
that dom(η) ∪ ran(var(η)) is a subset of the meta-variables in S1 and S2 and hence
var(S) ⊆ var(C) is fulfilled for S = (S0; skip; ηS1); S3. S0; skip ∈ StutV , and so
by the definition of MglV , S0; skip; ηS1 ∈ MglV . By a straightforward induction,
one shows that D1; D2 ∈ MglV whenever D1, D2 ∈ MglV , and we see that S =
(S0; skip; ηS1); S3 and hence in MglV .

The cases for the other constructors follow along the same lines as the low condi-
tional.

2. Let σC1 lL σC2. By symmetry and transitivity of lL, we conclude σC1 lL σC1

and σC2 lL σC2. With the help of Lemma A.9, we obtain C′′
1 , C′′

2 ∈ SliceV with
S1

.= C′′
1 lL σC1 lL σC2 lL C′′

2
.= S2. Lemma A.10.1 shows that C′′

1 lL C′′
2

implies C′′
1

.= C′′
2 , and by transitivity of .= we get S1

.= S2. �

Lemma A.9. Let C ∈ MglV with σ ∈ U ({C lL C}) and C ↪→′ C′ : S. Then there is a
C′′ ∈ SliceV with C′′ lL σC and C′′ .= S.

Proof. We proceed by structural induction on C ∈ MglV .

Suppose C ∈ PadV . Choose C′′ as σC, where all assignments to high variables are
replaced by skips. We have C′′ ∈ StutV . We also have S ∈ StutV , and so C′′ .= S.
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Suppose C = P; if B then C1 else C2; C3 with B : L. We have σC lL σC, hence
by definition of lL we obtain σP lL σP and σCi lL σCi for i = 1, 2, 3. From the
precondition C ↪→′ C′ : S and the definition of ↪→′ we get P ↪→′ P′ : S0 and Ci ↪→′ C′

i : Si

for i = 1, 2, 3. We apply induction hypothesis to the corresponding command-pairs and
obtain P′′, C′′

i with P′′ lL σP, P′′ .= S0, and C′′
i lL σCi, C′′

i
.= Si for i = 1, 2, 3. Then we

can conclude C′′ = P′′; if B then C′′
1 else C′′

2 ; C′′
3 lL σC, as well as C′′ .= S.

Suppose C = P; if B then C1 else C2; C3 with B : H. We have σC lL σC, so by
definition of lL we obtain σP lL σP, σC1 lL σC1 σC3 lL σC3 and σC1 lL σC2.
By symmetry and transitivity of lL we conclude σC2 lL σC2. From the precondition
C ↪→′ C′ : S and the definition of ↪→′ we get P ↪→′ P′ : S0 and Ci ↪→′ C′

i : Si for
i = 1, 2, 3. We apply induction hypothesis to the corresponding command-pairs and
obtain P′′, C′′

i with the desired properties for i = 1, 2, 3. Define C′′ as P′′; skip; C′′
1 ; C′′

3 ∈
SliceV . We have C′′ lL σC by Lemma A.7. On the other hand, S = S0; skip; ηS1; S3

for some preserving substitution η. We are left to show S .= C′′. By hypothesis, we
know C′′

1
.= S1 and C′′

3
.= S3. A straightforward induction shows that S1

.= ηS1 for
every preserving η. Another straightforward induction shows that .= is a congruence
with respect to sequential composition and so we conclude C′′ = P′′; skip; C′′

1 ; C′′
3

.=
S0; skip; ηS1; S3 = S.

The other constructors follow along the same lines as the low conditional.

Lemma A.10. Let S1, S2 ∈ SliceV . Then the following holds.

1. S1 lL S2 implies S1
.= S2.

2. If S1, S2 ∈ MglV and S1
.= S2 then there is an η with S1l?

LS2 :: η.

Proof. We prove Assertion 1 by induction on the structure of S1, where we make use
of the fact that SliceV ⊆ Slice+

V . If S1 ∈ StutV , then by definition of lL and the
precondition S2 ∈ SliceV we know that S2 ∈ StutV , and hence S1

.= S2. If S1 =
P1; if B1 then S1,1 else S1,2; S1,3 with B1 : L, then by definition of lL we know that
S2 = P2; if B2 then S2,1 else S2,2; S2,3 with P1, P2 = ε or P1 lL P2, and S1,i lL S2,i for
i = 1, 2, 3 and B1 ≡ B2. By definition of .=, P1

.= P2 holds, and by induction hypothesis
we see S1,i

.= S2,i for i = 1, 2, 3. By definition of .= we conclude S1
.= S2. The other

constructors follow in a similar fashion.
We prove Assertion 2 by induction on the term structure of S1:
Suppose S1 ∈ StutV . Then by definition of .=, S2 must also be in StutV . S1, S2 ∈

MglV , hence they have terminal meta-variables. A simple induction on the length of S1

shows that S1 lL S2 :: η is derivable.
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Suppose S1 = P1; if B1 then S1,1 else S1,2; S1,3, where P1, S1,1, S1,2, S1,3 are elements of
MglV ∩ SliceV . By definition of .= and MglV we get S2 = P2; if B2 then S2,1 else S2,2; S2,3

with P2, S2,1, S2,2, S2,3 ∈ MglV ∩SliceV and P1
.= P2, S1,i

.= S2,i for i = 1, 2, 3, and B1 ≡ B2.
We apply induction hypothesis to obtain P1l?

LP2 :: σ0 and S1,il?
LS2,i :: σi, for i = 1, 2, 3.

We can conclude S1l?
LS2 :: σ with σ =

⋃3
i=0 σi by definition of the unification calculus.

The other cases follow along the same lines.

Theorem 5.5. Let V ∈ ~Com, V, W ∈ ~ComV , W be a lifting of V, and V ⇀ V.

1. If there is a preserving substitution σ with σW lL σW, then V ↪→′ V ′ : S for some
V ′, S ∈ ~ComV .

2. If W ↪→ W ′ : S for some W ′, S ∈ ~ComV then V ↪→′ V ′ : S′ for some V ′, S′ ∈ ~ComV .

Proof. 1. Let W be an arbitrary lifting of V. From Theorem 5.4, it follows that σW lL

σW implies U (V lL V) 6= ∅. From Lemma 5.4, we see that V ∈ MglV . Restricting
ourselves to commands in ComV for the moment and substituting C for V, it
suffices to show the assertion

∃σ.σC lL σC ⇒ C ↪→′ C′ : S

for all C ∈ MglV . We prove this assertion by induction on the term structure of C.

If C ∈ PadV , we always have C ↪→′ C′ : S.

If C = P; Id := Exp; C1, with Id : L and σC lL σC, then we have σP lL σP,
σC1 lL σC1, and Exp : L by definition of lL. By applying induction hypothesis
we obtain P ↪→′ P′ : S0 and C1 ↪→′ C′

1 : S1. By definition of ↪→′ this implies
C ↪→′ P′; Id := Exp; C′

1 : S0; Id := Exp; S1.

If C = P; if B then C1 else C2; C3 with B : L, and σC lL σC, then we have σP lL σP
and σCi lL σCi for i = 1, 2, 3. By applying induction hypothesis, we obtain
P ↪→′ P′ : S0 and Ci ↪→′ C′

i : Si for i = 1, 2, 3. By definition of ↪→′, this implies
C ↪→′ P′; if B then C′

1 else C′
2; C′

3 : S0; if B then S1 else S2; S3

If C = P; if B then C1 else C2; C3 with B : H, and σC lL σC, then we have σP lL σP
and σCi lL σCi for i = 1, 3. Furthermore we have σC1 lL σC2, from which we
get σC2 lL σC2 by transitivity and symmetry of lL. Induction hypothesis yields
P ↪→′ P′ : S0 and Ci ↪→′ C′

i : Si for i = 1, 2, 3. Every meta-variable occurs at most
once in C, hence the same holds true for the subterms C1, C2.
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Lemma A.8 shows that S1, S2 ∈ MglV ∩ SliceV , S1
.= S2, and every meta-variable

occurs at most once in (S1, S2). Lemma A.10.2 implies that there is an η with
S1l?

LS2 :: η. η is a unifier of S1, S2, as Lemma 5.5 shows. We conclude that
C ↪→′ P′; if B then ηC′

1 else ηC′
2; C′

3 : S0; skip; ηS1; S3, which is what we wanted.

The cases for the other constructors follow along the same lines as the low condi-
tional. The assertion can then simply be lifted to command vectors.

2. By a straightforward induction over the derivation tree, it follows that W ↪→ W ′ :
S implies W ′ = σW for a preserving substitution σ. From Lemma 5.1 W ′ lL

S follows. By symmetry and transitivity of lL, we obtain σW lL σW. The
assertion now follows directly from part 1 of Theorem 5.5.
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Code

B.1 Integer Multiplication

// Multiplication of 6-bit integers in GEZEL

// Computes "result=m_in*n_in", termination is signaled by "done"

dp prod(in m_in, n_in : ns(6); out result : ns(12); out done : ns(1)) {

reg i : ns(4);

reg p : ns (12);

reg n,m : ns(6);

sfg init {p=0;

m=m_in;

n=n_in;

i=0;}

sfg shift {p = p << 1;

i=i+1;

n = n << 1;}

sfg add {p = p + m;}

sfg cont {result=0;

done=0;}

sfg term {result = p;

done=1;}

}
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fsm ctl_prod(prod) {

initial s0;

state s1,s2,s3;

@s0 (init,cont) -> s1;

@s1 if (i<6) then

if (n[5]) then (shift,cont) -> s2;

else (shift,cont) -> s1;

else(term) -> s3;

@s2 (add,cont) -> s1;

@s3 (term) -> s3;

}

B.2 Finite Field Exponentiation

// Exponentiation in GF(2^6) in GEZEL

// Computes "result=x_in^a_in", termination is signaled by "done"

dp exp(in x_in, a_in : ns(6); out done : ns(1); out result : ns(6)){

reg x : ns(6);

reg a : ns(6);

reg m : ns(6);

reg p,q,s : ns(6);

reg i : ns(4);

reg j : ns(4);

sfg init {x=x_in;

a=a_in;

m=0b000011;} // T^6+T+1: irreducible polynomial over F2

sfg sig0 {p=1;} // serves as field polynomial

sfg sig1 {q=0;}

sfg sig2 {i=6;}

sfg sig3 {j=6;}
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sfg sig4 {i=i-1;}

sfg sig5 {j=j-1;}

sfg sig6 {s=p;}

sfg sig7 {p=q;}

sfg sig8 {s=x;}

sfg sig9 {q=q<<1;}

sfg sig10 {s=s<<1;}

sfg sig11 {a=a<<1;}

sfg sig12 {q=q^m;}

sfg sig13 {q=q^p;}

sfg cont {done=0;

result=0;}

sfg term {done=1;

result=x;}

}

fsm ctl_exp(exp) {

initial s1;

state s2,s3,s4,s5,s6,s8,s9,s10,s11,s12,end;

@s1 (init,sig0,sig2,cont) -> s2;

@s2 if (i==0)

then (term) -> end;

else (sig1,sig3,sig6,cont) -> s3;

@s3 if (j==0)

then (sig7,cont) -> s8;

else (cont) -> s4;

@s4 if (q[5])

then (sig9,cont) -> s5;

else (sig9,cont) -> s6;

@s5 (sig12,cont) -> s6;

@s6 if (s[5])

then (sig5,sig10,sig13,cont) -> s3;

else (sig5,sig10,cont) -> s3;

@s8 if (a[5])
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then (sig1,sig3,sig8,cont) -> s9;

else (sig4,sig11,cont) -> s2;

@s9 if (j==0)

then (sig4,sig7,sig11,cont) -> s2;

else (cont)-> s10;

@s10 if (q[5])

then (sig9,cont) -> s11;

else (sig9,cont) -> s12;

@s11 (sig12,cont) -> s12;

@s12 if (s[5])

then (sig5,sig10,sig13,cont) -> s9;

else (sig5,sig10,cont) -> s9;

@end (term) -> end;

}
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