
Automatic Discovery and Quantification of Information Leaks

Michael Backes
Saarland University and MPI-SWS

backes@cs.uni-sb.de

Boris Köpf
MPI-SWS

bkoepf@mpi-sws.org

Andrey Rybalchenko
MPI-SWS

rybal@mpi-sws.org

Abstract

Information-flow analysis is a powerful technique for rea-
soning about the sensitive information exposed by a program
during its execution. We present the first automatic method
for information-flow analysis that discovers what informa-
tion is leaked and computes its comprehensive quantitative
interpretation. The leaked information is characterized by an
equivalence relation on secret artifacts, and is represented
by a logical assertion over the corresponding program vari-
ables. Our measurement procedure computes the number of
discovered equivalence classes and their sizes. This provides
a basis for computing a set of quantitative properties, which
includes all established information-theoretic measures in
quantitative information-flow. Our method exploits an in-
herent connection between formal models of qualitative
information-flow and program verification techniques. We
provide an implementation of our method that builds upon
existing tools for program verification and information-
theoretic analysis. Our experimental evaluation indicates the
practical applicability of the presented method.

1. Introduction

Information-flow analysis keeps track of sensitive infor-
mation that is processed by a program during its execution.
One of the main goals of the analysis is to check whether any
sensitive information is exposed to the environment. When
information is leaked, the analysis needs to qualitatively and
quantitatively assess the extent of the leak.

The existing approaches to information-flow analysis pro-
vide a variety of techniques for dealing with the disclosure
of information, see [35]. Several approaches deal with the
qualitative aspect of information-flow analysis [1], [5], [13],
[18], [34], which is usually formalized by an equivalence
relation over secret artifacts manipulated by the program.
Security guarantees correspond to the (im)possibility of
distinguishing between secret artifacts by observing program
behaviors. Existing quantitative approaches characterize the
magnitude of information leaks, e.g. in terms of the number
of secret bits that are revealed [9], [17], or in terms of the
rate at which information can be transmitted through the
leak [26].

Unfortunately, the applicability of the existing
information-flow analyses suffers from several limitations.
The qualitative approaches assume that the equivalence
relation is supplied manually; however, such relations
are notoriously difficult to find due to the complexity of
reasoning about how the program treats its secrets. On the
quantitative side, the estimates computed by the existing
approaches mostly deal with the number of leaked bits,
e.g. [10], [29], which is not sufficient for establishing
comprehensive security guarantees. For example, a security
analysis might require a measure for the number of attempts
that are needed to identify a secret value, bounds on the
throughput of the program if it is used as an unwanted
communication channel, or a combination of several such
measures.

In this paper, we present the first automatic method for
information-flow analysis that addresses these challenges.
Our method delivers a complete analysis that automatically
discovers the leaked information, determines its information-
theoretic characteristics, and computes a comprehensive set
of quantitative properties.

The leaked information is computed in the form of an
equivalence relation and is represented by a logical assertion
over program variables. The equivalence relation computed
by our method is precise, i.e., describes only the infor-
mation that is leaked, and can be used on its own, e.g.,
for declassification policies [4]. Our method goes beyond
this qualitative characterization, and uses the assertion as
an input to a measurement procedure that computes the
number of discovered equivalence classes and their sizes. We
demonstrate how these data provide a basis for computing a
set of quantitative properties, which is comprehensive in the
sense that it includes all information-theoretic measures that
are commonly considered in the literature on quantitative
information flow, i.e., Shannon entropy, guessing entropy,
min-entropy, and channel capacity.

Our method exploits an inherent connection between
qualitative information-flow and program verification tech-
niques. The desired equivalence relation can be viewed as
a precondition for safe execution of the program under
consideration augmented with a ‘shadow’ copy and an
assertion checking the information leakage. The assertion
fails whenever the shadow copy of the program exhibits a
behavior that witnesses the ability to distinguish equivalent

artifacts. Our method iteratively constructs the equivalence
relation. It starts with a coarse initial candidate that claims no
leakage of sensitive information, and incrementally weakens
the claim by refining the candidate relation, until there
is no witness of further leaks. The key to the automatic
construction is the successive exclusion of counterexamples
witnessing inadequacy of the current equivalence.

We identify the characteristics of the equivalence rela-
tion that provide the common basis for computing various
entropy measures, as required by the quantitative analysis.
These characteristics consist of the number of equivalence
classes and their sizes, and can be further refined by
probability distributions inside the equivalence classes. We
show how, given these characteristics, one can compute
the average uncertainty about the secret in bits (Shannon
entropy), the average number of guesses that are needed to
identify secrets (conditional and minimal guessing entropy,
respectively), and the maximal rate at which information
can be transmitted using the program as a communication
channel (channel capacity). Finally, we present a procedure
for computing these characteristics for a given equivalence
relation.

The presentation of our method is aligned with the exist-
ing body of research on program verification and symbolic
reasoning. It suggests a basis for an automatic tool that
can be built by utilizing existing software model checkers,
quantifier elimination algorithms and solution counting tech-
niques. We use these components in a black-box fashion,
hence our tool will immediately benefit from the develop-
ment of the state-of-the-art in the respective areas.

We have implemented the presented method and have
successfully applied it to analyze a series of example pro-
grams: a password checker, an electronic purse, a sum query,
and an electronic auction. For each program, we determined
the equivalence relations representing the leaked information
and computed the sizes of the equivalence classes together
with different information-theoretic interpretations.

In summary, our main contribution is the first automatic
method for information-flow analysis that discovers what
information is leaked and computes its comprehensive quan-
titative interpretation.

Outline. The paper is structured as follows. We present
related work in the remainder of this section. In Section 2,
we illustrate how our method applies to an example program.
We give the basic definitions in Section 3. In Section 4,
we present our method in abstract terms, before we outline
its implementation in Section 5. We present experimental
results in Section 6.

Related work. For an overview of language-based ap-
proaches to information-flow security, refer to [33]; for an
overview on declassification, see [35].

The use of equivalence relations to characterize partial in-
formation flow was proposed in [13] and further explored in
[5], [18], [41]. Several approaches use equivalence relations
to specify downgrading assertions within information flow
type systems [4], [34]. Our method can be used to synthesize
such assertions. The idea that secure information flow can
be verified by analyzing pairs of program runs can be found
in [5], [16], [23], [38], [39].

Early approaches for quantifying information flow focus
on the capacity of covert channels between processes in
multi-user systems [20], [30], [40] rather than on infor-
mation flow in programs. The first approach to connect
information theory to program analysis is [17].

A type system for statically deriving quantitative bounds
on the information that a program leaks is presented in [9],
[10]. The analysis is based on Shannon entropy and an
observer that can see, but not influence, the public inputs
to the program. Our method accommodates a variety of
information measures and captures attackers that can interact
with the program by providing inputs.

The information leakage of loops can be characterized
in terms of the loop’s output and the number of iterations
[27]. In our model, the information that is revealed by the
number of loop iterations can be captured by augmenting
loops with observable counters. For given upper bounds
on the number of iterations, our method can be used to
automatically determine this information.

Information-theoretic bounds in terms of the number of
program executions are presented in [24]. The algorithms
for computing these bounds for a concrete system rely on
an enumeration of the entire input space, and it is not yet
clear how the analysis scales to larger systems.

The model in [12] captures an attacker’s belief about a
secret, which may also be wrong. Reasoning about beliefs is
out of the scope of entropy-based measures, such as the ones
used in this paper. One advantage of entropy-based measures
is the direct connection to equivalence relations, which
makes them amenable to automated reasoning techniques.
To the best of our knowledge, our method is the first static,
quantitative analysis that has been implemented.

An automatic dynamic quantitative information flow anal-
ysis method is presented in [29]. The method enables one
to derive tight bounds on the information flow in individual
program runs, but does not yield bounds on the maximal
information that a program can leak, which is important for
security analysis.

2. Illustrative example

To illustrate our method and the kind of results that it
provides, we show how it applies to an example program.

We consider an electronic sealed-bid auction in which
bidders want their bids to remain confidential and the winner
is publicly announced. The announcement of the winner

2

reveals partial information about the individual bids, e.g.,
about their ordering.

This kind of electronic auction can be implemented as a
program P that takes as input n secret bids h1, . . . , hn and
outputs the winner of the auction in a variable l, i.e., upon
termination, l = i such that hi = max{h1, . . . , hn}.

int l=0;

for (int i=0; i<n; i++){

if (h[i]>h[l])

l=i;

}

In the first step, we deduce an equivalence relation R on
the set of possible secret inputs to express what an attacker
can learn about the input by observing the program’s output:
two inputs are in the same equivalence class whenever
the program produces the same result on both inputs. By
observing the output of the program, the attacker can then
only deduce the secret input up to its R-equivalence class.
We cast such equivalence relations R as formulas over pairs
of secret inputs.

Checking that a program leaks no more secret information
than what is specified by R can be cast as a reachability
problem on two independent instances of the program, and
it can be solved using off-the-shelf model-checkers, such as
B [21], S [3], SA [11], and A [31]. If the
check fails (i.e., if the program leaks more information), the
model checker produces a counterexample: it returns two
program paths π and η along which two R-related inputs
produce different outputs.

Guided by this counterexample, we refine the relation R to
R′, such that R′ distinguishes between all secret inputs that
lead to different observable outputs along the paths π and
η. We iterate this refinement process until we have found
a relation R for which the check fails; this R is a logical
characterization of the maximal information that the program
can leak.

For our auction program and n = 3, this iterative refine-
ment process yields the relation

R ≡ (h1 < h3 ∧ h2 < h3 ∧ h1 < h3 ∧ h2 < h3)

∨ (h1 < h3 ∧ h3 ≤ h2 ∧ h1 < h2 ∧ h3 ≤ h2)

∨ (h3 ≤ h1 ∧ h1 < h2 ∧ h1 < h2 ∧ h3 ≤ h2)

∨ (h2 < h3 ∧ h3 ≤ h1 ∧ h2 ≤ h1 ∧ h3 ≤ h1)

∨ (h3 ≤ h2 ∧ h2 ≤ h1 ∧ h2 ≤ h1 ∧ h3 ≤ h1) ,

which represents a set of pairs ((h1, h2, h3), (h1, h2, h3)) of
triples of input variables, i.e., a binary relation. Here h1, h2
and h3 denote the secret bids that are input to the second
instance of the program. Our specific implementation uses
the model-checker A, which does not cover arrays. To
analyze the auction program, we unfold the loop and replace
each array element h[i] by a variable h_i. Note that this

is a limitation of our implementation rather than one of our
method.

In the second step, we determine the R-equivalence
classes. To this end, we pick an arbitrary vector of bids
(say, (0, 0, 0)) and use it to instantiate the variables h1, h2, h3
of R. In this way, we obtain a formula B1 over the variables
h1, h2, h3 that represents all the bids that are R-equivalent
to (0, 0, 0), i.e., the R-equivalence class of (0, 0, 0). Then
we pick a representative of another equivalence class, i.e.
a model of ¬B1 and repeat the procedure. We proceed in
this way until we have enumerated all equivalence classes,
i.e., until B1 ∨ · · · ∨ Br ≡ >. The Omega-calculator [32] is a
tool for manipulating formulas in Presburger Arithmetic (i.e.,
linear arithmetic with quantifiers) using various operations,
such as computing models, relational composition, and set
difference, and we use it to implement the enumeration of
the equivalence classes. For our auction example, we obtain
the following equivalence classes:

B1 ≡ h2 ≤ h1 ∧ h3 ≤ h1 ,

B2 ≡ h1 < h3 ∧ h2 < h3 ,

B3 ≡ (h1 < h3 ∧ h3 ≤ h2) ∨ (h3 ≤ h1 ∧ h1 < h2) ,

where the clauses of B3 are exclusive.
In the third step, we use LE (Lattice point Enumer-

ation) [25], a tool for computing the number of integer
solutions of linear arithmetic constraints, for counting the
size of each of the equivalence classes. For this, we have to
add additional constraints to bound the size of the input
domain. For our auction program, we choose as inputs
positive integers of 32 bits, i.e. 0 ≤ h1, h2, h3 ≤ 232 − 1.

Then LE determines the following sizes:

|B1| = 26409387513978151235418587136 ,

|B2| = 26409387495531407161709035520 ,

|B3| = 26409387504754779196416327680 .

The result shows that the three equivalence classes
B1, B2, B3 are of almost equal size; the difference is due
to the asymmetry with which our program determines the
winner of an auction with two or more equal bids. If
the input values are independently and uniformly chosen
(modeled by a random variable U), the attacker’s initial
uncertainty about the auction is H(U) = 3 · 32 = 96 bits.
Observing the output of the program reduces this uncertainty
to

H(U|VR) =
1

296

3∑
i=1

|Bi| log |Bi| ≈ 94.42 ,

which corresponds to an information leakage (a reduction in
uncertainty) of 96 − 94.2 = 1.58 bits.

Existing quantitative approaches will return (an approxi-
mation of) this number as a result. Our approach additionally
offers quantities that go beyond the number of bits that are
leaked. We can, for example, answer questions about the

3

average number of guesses required to correctly determine
the secret inputs after observing the output (1.3204 · 1028),
the average number of guesses required to determine the
weakest secrets (1.3204 · 1028, as the equivalence classes
in our examples are almost of equal size), or simply the
number of possible bid combinations that lead to a given
output (|B1|, |B2|, and |B3|). As we will show, all of these
measures can be easily derived from the sizes |B1|, |B2|, |B3|

of the R-equivalence classes computed by our approach.

3. Preliminaries

In this section, we give the necessary definitions for
dealing with programs and information-flow analysis.

3.1. Programs and computation

We model a program P as a transition system (S ,T , I, F)
that consists of
• S : a set of program states,
• T : a finite set of program transitions such that each

transition τ ∈ T is associated with a binary transition
relation ρτ ⊆ S × S ,

• I : a set of initial states, I ⊆ S ,
• F : a set of final states, F ⊆ S .

Our exposition does not assume any further state structure;
however, for the sake of concreteness we point out that
usually a program state represents a valuation of program
variables in scope, and a program transition corresponds to
a program statement as written in a programming language.

A program computation σ is a sequence of program states
s1, . . . , sn that starts at an initial state, ends at a final state,
and relates each pair of consecutive states by some program
transition. Formally, we require that s1 ∈ I, sn ∈ F, and
for each 1 ≤ i < n there exists a transition τ ∈ T such
that (si, si+1) ∈ ρτ.

A program path π is a (non-empty) sequence of program
transitions, i.e., π ∈ T +. We write π · τ to denote a path
obtained by extending π using a transition τ. Given two
transition relations ρ1 and ρ2, we define their relational
composition ρ1 ◦ ρ2 as usual:

ρ1 ◦ ρ2 ≡ {(s, s′) | ∃s′′ ∈ S : (s, s′′) ∈ ρ1 ∧ (s′′, s′) ∈ ρ2} .

Given a path π = τ1 · . . . · τn, a path relation ρπ consists of
the relational composition of transition relations along the
path, i.e.,

ρπ ≡ ρτ1 ◦ . . . ◦ ρτn .

A program path π is feasible if the corresponding path
relation is not empty, i.e., ρπ , ∅.

We assume that initial and final states are pairs consist-
ing of low and high components, i.e., I = Ihi × Ilo and
F = Fhi × Flo. We assume an observer that knows the
program, i.e., the corresponding transition system, and can

see the low components of the initial and final states of
a given computation. That is, the observer cannot see the
high components of the initial and final states, and it cannot
see any intermediate states of the computation. The later
condition explains why we assume the high/low structure
only on the initial and final states.

3.2. Qualitative information flow

We use an equivalence relation R over Ihi, i.e., R ⊆ Ihi×Ihi,
to characterize the information that is leaked to an observer.
R represents the observer knowledge in terms of equivalence
classes. After observing a program computation the observer
only knows that the high component of the input state
belongs to the set [shi]R. If R is the identity relation, i.e.,

=hi ≡ {(shi, shi) | shi ∈ Ihi} ,

then the observer knows the value shi, since the equiva-
lence class [shi]=hi is a singleton set and hence uniquely
determines shi. In contrast, the largest equivalence relation
Allhi that does not distinguish between any states, i.e.,
Allhi = Ihi × Ihi, captures that the observer knows nothing
about Ihi, since we have [shi]Allhi = Ihi. An equivalence
relation R such that =hi ⊂ R ⊂ Allhi represents a partial
knowledge about the high component of the input.

The information that a program leaks partially depends on
the low component of the initial states. We call such a low
component of an initial state an experiment, and assume that
it can be chosen by the attacker. Our goal is to characterize
the secret information that a program leaks when it is run
on a given set of experiments E ⊆ Ilo. Given a program
P and a set of experiments E, there is an information leak
with respect to an equivalence relation R if there is a pair
of computations induced by paths π and η that start from
initial states with R-equivalent high components and equal
low components in E, and lead to final states with different
low components:

LeakP(R, E, π, η) ≡
∃s, t ∈ I ∃s′, t′ ∈ F : (s, s′) ∈ ρπ ∧ (t, t′) ∈ ρη ∧

slo = tlo ∧ (shi, thi) ∈ R ∧ slo ∈ E ∧ s′lo , t′lo .

The relation R over-approximates the maximal information
that is leaked when the program P is run on the experiments
E, written as ConfineP(R, E), if there is no witness of further
leaks:

ConfineP(R, E) ≡
∀π, η ∈ T + : ¬LeakP(R, E, π, η) .

The largest equivalence relation R with ConfineP(R, E) is
the most precise characterization of the leaked information
information, denoted by ≈E .

≈E ≡
⋃{

R | ConfineP(R, E)
}
.

4

Example 1. If a program P satisfies ConfineP(Allhi, Ilo), a
low observer does not learn any information about the high
inputs even if he runs the program on all low inputs. This
property is called non-interference.

The set of experiments E characterizes the set of low
input values for which the information leakage of a program
is characterized. Different instantiations of E correspond to
different attack scenarios. In general, ≈E ⊆≈E′ whenever
E′ ⊆ E, i.e., more experiments allow for a more precise
characterization of the secret and hence leak more informa-
tion.

Example 2. Consider a password checker P that receives
as high input a password and as low input a password
candidate. The relation ≈{x} captures the information that
P leaks when it is run on the password candidate x. The
relation ≈{Ilo} captures the information that P leaks in an
exhaustive password search.

ConfineP(R, E) does not capture information leaks ex-
posed due to non-termination of P. Sufficient preconditions
for the termination of P can be automatically generated [14]
and used to exclude non-terminating inputs. From now on,
we will assume that P terminates on all initial states s ∈ I.

3.3. Quantitative information flow

In the following, we use information theory to give
quantitative characterizations of equivalence relations R with
ConfineP(R, E). These characterizations have the advantage
of being compact and human-readable. Moreover, they yield
concise interpretations, e.g., in terms of the expected guess-
ing effort that is required to determine the secret given the
available information.

We first illustrate in detail how R can be characterized
using the guessing entropy as a measure. After this, we give
examples of alternative information measures.

Guessing entropy. Let A be a finite set and p : A → R a
probability distribution. For a random variable X : A → X,
we define pX : X → R as pX(x) =

∑
a∈X−1(x) p(a), which is

often denoted by p(X = x) in the literature.
The guessing entropy of the random variable X is the

average number of questions of the kind “does X = x
hold” that must be asked to guess X’s value correctly [28].
If we assume p to be public, the optimal procedure is to
try each of the possible values in order of their decreasing
probabilities. Without loss of generality, let X be indexed
such that pX(xi) ≥ pX(x j), whenever i ≤ j. Then the guessing
entropy G(X) of X is defined as

G(X) =
∑

1≤i≤|X|

i pX(xi) .

Given another random variable Y : A → Y , one denotes
by G(X|Y = y) the guessing entropy of X given Y = y, that

is, with respect to the distribution pX|Y=y. The conditional
guessing entropy G(X|Y) is defined as the expected value
of G(X|Y = y) over all y ∈ Y , namely,

G(X|Y) =
∑
y∈Y

pY (y)G(X|Y = y) .

This quantity represents the expected number of guesses
needed to determine X when the value of Y is already
known.

Guessing entropy and programs. We assume a given
probability distribution p : Ihi → R and an equivalence
relation R ⊆ Ihi × Ihi. We use two random variables to
quantify the information that corresponds to R. The first is
the random variable U that models the choice of a secret in
Ihi according to p (i.e., U = idIhi). The second is the random
variable VR that maps each secret to its R-equivalence class:
VR : Ihi → Ihi/R, where VR(shi) = [shi]R.

Consider now a program P that satisfies ConfineP(R, E).
Then G(U) is the expected number of guesses that an
attacker must perform to determine the secret input, prior to
observing the output of P. The value of G(U|VR = [shi]R)
is the adversary’s remaining guessing effort after learning
the R-equivalence class of shi. Hence, G(U|VR) is a lower
bound on the expected number of guesses that an attacker
must perform for recovering the secret input after having
run P on all experiments from E.

Alternative information measures. A number of alterna-
tive information measures, e.g., see [7], [24], [37], can be
connected to programs along the same lines as the guessing
entropy.

The minimal guessing entropy [24] Ĝ(U|VR) is defined
as the expected guessing effort for the weakest secrets in Ihi,
i.e. the secrets that are easiest to guess after observing the
output of P. Formally, one defines

Ĝ(U|VR) = min{G(U|VR = [shi]R) | shi ∈ Ihi} .

The conditional Shannon entropy H(U|VR) captures the
attacker’s uncertainty about the secret input of the program
in terms of bits, i.e., in terms of a lower bound on the shortest
representation of the secret [2], [36]. Formally, one defines
H(U|VR) as the expected value of H(U|VR = [shi]R) over
all shi ∈ Ihi, where H(U|VR = [shi]R) is the Shannon entropy
of U with respect to the distribution pU|VR=[shi].

The channel capacity

CR = max
p

(H(U) − H(U|VR))

is an upper bound on the rate at which information can
be transmitted through the program by variation of its
secret inputs [2], [36]. Here, p ranges over all probability
distributions on Ihi.

The conditional min-entropy H∞(U|VR) captures the un-
certainty about the secret input in terms of the probability

5

for guessing the secret in one try after observing the output
of the program. There are different definitions for the con-
ditional min-entropy in the literature; the one given in [37]
is easily cast in terms of U and VR.

Which measure is appropriate depends on the given attack
scenario. For example, the channel capacity is appropriate
for assessing the damage of intentional communication, e.g.,
by a Trojan horse, while the minimal guessing entropy can
be used to assess the impact of unintentional information
release.

4. Leak discovery and quantification

In this section, we present our method, called DQ
(Dcovery and Qification), for the automatic discovery
of leaked information and its comprehensive quantitative
interpretation. DQ takes as input a program P and
a set of experiments E. It produces the characterization of
the leaking information in terms of the equivalence relation
≈E and performs its information-theoretic, quantitative in-
terpretation.

DQ consists of two procedures D and Q
that perform the qualitative and quantitative analysis, re-
spectively. We proceed with a detailed description of each
procedure below, before we provide a correctness statement
for DQ and discuss the scope of our method in
Sections 4.3 and 4.4, respectively.

Our presentation does not rely on any particular way
of representing programs and equivalence relations over
program states. In Section 5, we exploit this generality to
provide an implementation of DQ using existing tools
for program verification and information-theoretic analysis.

4.1. Discovery of information leaks

Given a program P and a set of experiments E, our goal
is to synthesize ≈E , i.e. the largest equivalence relation R
such that ConfineP(R, E) holds. The procedure D shown
in Figure 1 computes this equivalence relation.

The computation is performed in an incremental fashion.
Our procedure D stores the current candidate for the
equivalence relation in the variable R. Initially, R contains
the coarsest equivalence relation, i.e. one that claims that no
information is leaked, see line 1 in Figure 1.

During the execution of D, it is checked whether R
adequately represents the leaking information, see line 2. If
R is inadequate, which is witnessed by a pair of paths, say
π and η, then the candidate R is refined. The refinement
step eliminates the discovered inadequacy using the relation
RefineE(π, η), see line 3. The refinement step guarantees that
the information leak witnessed by the pair of paths π and η
is captured by the refined relation, i.e., after executing line
3 the predicate LeakP(R, E, π, η) no longer holds.

1
2
3
4
5
6

procedure D(P, E)
input

P : program
E : set of experiments

vars
R : equivalence relation

output
≈E : characterization of leaking information

begin
R B Ihi × Ihi

while exists π, η ∈ T + : LeakP(R, E, π, η) do
R B R ∩ RefineE(π, η)

done
R B R ∪ =Ihi

return R
end.

Figure 1. Procedure D for computing a logical repre-
sentation of the leaked information during a set of experi-
ments.

The procedure D generates a symmetric and transitive
relation. For nondeterministic programs P, this relation is not
necessarily reflexive, because there can be two computations
that start from the same initial state and produce different
low outputs. We choose a conservative approach and assume
that such non-reflexive inputs are leaked. This is achieved
by adding the identity relation in Line 5, which yields an
equivalence relation.

The search for leaks in Line 2 and the refinement step in
Line 3 are complex tasks for which we can employ existing
techniques.

Detecting leaks. Line 2 identifies pairs of paths that witness
information leaks with respect to the current candidate
equivalence relation R. We discover such paths automatically
by analyzing pairs of program runs, e.g., see [5], [39].

An equivalence relation R does not yet adequately capture
the leaked information if and only if there is a pair of R-
related initial high states from which this error state is reach-
able with low input from E. This reachability problem can
be solved, for example, using software model checkers such
as B [21], S [3], or SA [11]. The witness paths π
and η can be reconstructed by inspecting the counterexample
produced by the model checker.

Refining equivalence. The refinement of the candidate
relation R is determined by the paths π and η. This step
partitions R by adding new equivalence classes, see the
relational intersection in line 3. To compute this refinement,
we distinguish between all high input states that lead to
different low-observable outputs along (π, η). Formally, we
use a relation RefineE(π, η) such that

6

RefineE(π, η) ≡
{(shi, thi) | ∀s, t ∈ I ∀s′, t′ ∈ F : (s, s′) ∈ ρπ ∧ (t, t′) ∈ ρη ∧

slo = tlo ∧ slo ∈ E→ s′lo = t′lo} .

The relation RefineE(π, η) can be obtained by applying
existing quantifier elimination procedures, e.g., the Fourier-
Motzkin algorithm for linear arithmetic.

Correctness of D. The procedure D in Figure 1 is
a formalization of our counterexample-guided computation
of leaking information, based on the building blocks pre-
sented above. The correctness of D is formalized in the
following proposition.

Proposition 1. Let P be a program and let E by a set of
experiments. If D terminates on input (P, E) and returns
R, then

R = ≈E ,

that is, R is the largest equivalence relation such that
ConfineP(R, E) holds.

Proof: ConfineP(R, E) follows directly from the termi-
nation condition of D. R is the largest relation with this
property, as it is the conjunction of weakest preconditions
for the equality of the low outputs. It remains to show that
R is an equivalence relation, i.e., reflexive, symmetric and
transitive. For symmetry, assume that there is a (s, t) ∈ R
such that (t, s) < R. Then there is a conjunct RefineE(π, η) in
R that is not satisfied by (t, s), i.e., there is an experiment in
which t and s lead to different low outputs along (π, η).
Then s and t also lead to different low outputs along
(η, π). As ConfineP(R, E) is satisfied, this contradicts the
assumption (s, t) ∈ R. For transitivity, assume that there are
(s, t), (t, u) ∈ R such that (s, u) < R. Then there exists a
pair of paths (π, η) and s′, u′ ∈ F such that (s, s′) ∈ ρπ,
(u, u′) ∈ ρη and s′lo , u′lo. Choose t′ ∈ F with (t, t′) ∈ ρη.
Such a t′ exists because we assume that P terminates on
all t ∈ I. As (s, t), (t, u) ∈ R, we have s′lo = t′lo and t′lo = u′lo,
which contradicts the assumption s′lo , u′lo. Reflexivity holds
because the identity relation is added to R before it is
returned.

4.2. Quantification of information leaks

For computing the information-theoretic characteristics
presented in Section 3.2, the procedure Q determines
the number r and the sizes n1, . . . , nr of the equivalence
classes of an equivalence relation R. See Figure 2 for
its description. Q proceeds by iteratively computing
representative elements of the equivalence classes of the
relation R, identifying the corresponding equivalence classes
and determining their sizes.

1
2
3
4
5
6
7
8
9

procedure Q(R)
input

R : equivalence relation
vars

Q : auxiliary set of high initial states
output
{n1, . . . , nr} : sizes of the R-equivalence classes

begin
i B 1
Q B Ihi

while Q , ∅ do
si B select in Q
ni B Count([si]R)
Q B Q \ [si]R

i B i + 1
done
return {n1, . . . , ni−1}

end.

Figure 2. Procedure Q for computing the information-
theoretic characteristics of a given equivalence relation R.

Our iteration manipulates a set of high initial states Q,
which is initialized to the full set in line 2. In the first
iteration, we choose an arbitrary s1 ∈ Q and determine
the size of the R-equivalence class [s1]R of s1. In the i-th
iteration, we find si such that [si]R , [s j]R for all j < i, see
line 4. If such an si exists, we determine the size of [si]R

in line 5 and proceed with the next iteration after excluding
the equivalence class of si from Q. Otherwise, we report the
sizes of the equivalence classes.

Logical operations. Our procedure performs a number of
logical operations on the set Q. We assume that the set Q is
given as a logical assertion over the high variables h and that
the equivalence relation R is given by an assertion over h and
their copies h. The while condition in line 3 is performed
by a logical satisfiability check. Line 4 requires finding a
satisfying assignment to the assertion Q(h). We determine
the members of the equivalence class [si]R by the assertion
R(h, h) ∧ si = h whose free variable h represents the high
states related to si. Line 6 amounts to logical conjunction
and negation.

Counting elements. Our method requires an algorithm
Count that, given a set A, returns the number of elements in
A, i.e., Count(A) = |A|. If A is represented as a formula φ,
this number corresponds to the number of models for φ.

For example, if S is represented in linear arithmetic, this
task can be solved as follows. Suppose φ is in disjunctive
normal form, i.e., φ = φ1 ∨ φ2 ∨ . . . φn, where the clauses
φi are conjunctions of linear inequalities. Then the number
of satisfying assignments of each clause corresponds to the
number of integer solutions of the corresponding system

7

of inequalities. We can apply Barvinok’s algorithm [6] for
computing the number of integer points in convex polyhedra.
The Lattice Point Enumeration Tool (LE) [25] provides
an implementation of this algorithm.

By summing over the number of solutions for every clause
and removing possible duplicates, we obtain the number of
models for φ.

Correctness of Q. The algorithm Q in Figure
2 is a formalization of the procedure sketched above. Its
correctness is implied by the following proposition.

Proposition 2. Let R be an equivalence relation on Ihi with
Ihi/R = {B1, . . . , Br}. If Q terminates on input R, it
returns the set {|B1|, . . . , |Br |}.

Proof: Q is a predicate representing a set of high initial
states. It is initialized with Ihi, which represents all possible
high initial states. The assignment Q B Q\[si]R in removes
[si]R from this set. As the next representative element is
chosen from this reduced state space, we have [si]R , [si]R

for i , j. The algorithm terminates if Q = ∅, which implies
that all equivalence classes have been found. If Count is
correct, the assertion follows.

Information-theoretic interpretation. With a uniform
probability distribution on Ihi, the output of Q can
be given various information-theoretic interpretations. We
consider the attacker’s guessing effort for deducing the secret
input to the program from the observable output (conditional
and minimal guessing entropy), the attacker’s remaining
uncertainty about the secret in terms of bits (Shannon
entropy), and the maximal rate at which information can be
transmitted using the program as a communication channel
(channel capacity). A formula for the min-entropy in terms
of |Ihi| and r can be found in [37].

Proposition 3. Let R ⊆ Ihi × Ihi be an equivalence relation
with Ihi/R = {B1, . . . , Br}, let n = |Ihi|, and let U and VR be
defined as in Section 3.3. Then

1) G(U|VR) = 1
2n

∑r
i=1 |Bi|

2 + 1
2 ,

2) Ĝ(U|VR) = min{(|Bi| + 1)/2 | i ∈ {i, . . . , r}},

3) H(U|VR) = 1
n
∑r

i=1 |Bi| log2 |Bi|,

4) CR = log2 r, if P is deterministic.

Proof: Assertions 1 and 3 are due to [24]. For 2, a sim-
ple calculation shows that, on the average, (k+1)/2 attempts
are needed for guessing one of k equally likely alternatives.
For 4, observe that H(U)−H(U|VR) = H(VR)−H(VR|U) =

H(VR). The last step follows because VR is determined
by U. H(VR) reaches its maximum of log r when VR is
uniformly distributed. For deterministic programs P, this
uniform distribution can be achieved by a suitable choice
of pU .

4.3. Correctness of DQ

The following theorem states the correctness of DQ.

Theorem 1 (Correctness of DQ). Let P be a program
and E be a set of experiments. If DQ(P, E) terminates,
then it outputs the sizes {n1, . . . , nr} of the ≈E-equivalence
classes of Ihi.

Theorem 1 implies that DQ correctly determines
the sizes of the ≈E-equivalence classes. Together with
Proposition 3, this gives rise to push-button technology
for computing a variety of information-theoretic measures
beyond those offered by existing approaches.

4.4. Scope of our method

We briefly discuss the scope of our method. In particular,
we identify the languages for which D can be easily
implemented, discuss the impact of nontermination, and
present initial ideas for scaling-up.

Soundness and language features. In principle, D
can be implemented for any programming language for
which model-checkers are available, including those with
arrays [22] and heap structures [8]. When implementing
D using a model-checker that is sound but not complete,
spurious leaks may be detected. In this case, the equivalence
relation computed by D will be finer than ≈E , which
corresponds to an over-approximation of the maximal infor-
mation leakage, and can be used for certifying the security
of a program.

Similarly, Q can in principle be implemented for
any logical theory for which the number of models of an
assertion can be counted, however, we are not aware of
practical solutions for this task that go beyond Boolean
propositional logic and Presburger Arithmetic.

In Section 5 we present an implementation of DQ
for a subset of C with expressions in linear arithmetic.

(Non)termination of DQ . The algorithm D is
initialized with the coarsest equivalence relation on the set of
secret inputs, which claims absence of leaks in the analyzed
program. This equivalence relation is refined during the
execution of D. A longer execution time of D cor-
responds to a finer equivalence relation, which corresponds
to more information leakage. D can be interrupted at
any time, and will return an equivalence relation that is
coarser than ≈E , i.e., an under-approximation of the maximal
information that the analyzed program can leak. If this
under-approximation already violates a given security policy,
the insecurity of the analyzed program is certified.

For Q, a longer execution time corresponds to a larger
number of equivalence classes, which corresponds to more

8

information leakage. Q can be interrupted at any time.
In the worst-case, all equivalence classes that have not been
determined at this point are singleton sets. Together with
the sizes of the equivalence classes that have already been
enumerated and the size of the set of secret inputs, this
can be used for computing an over-approximation of the
maximal information that is leaked. In this way, the output of
an interrupted execution of Q can be used for certifying
the security of the analyzed program.

Scaling up. The computation of DQ relies on the
enumeration of the leaks of a program. The number of leaks
can be quadratic in the number of program paths. Hence,
when applied in a vanilla fashion, our method works well on
programs with few paths, e.g, programs without branching
statements inside of loops. For programs with branching
statements inside of loops, the number of leaks may be large.
For example, in the electronic auction program given in
Section 2, the number of paths is exponential in the number
of bids n, which does not scale.

A number of speed-up techniques, such as predicate
abstraction [19] and widening [15], can be used to analyze
multiple program paths in Line 2 of D. Applying such
techniques will improve the efficiency of our method, how-
ever, these speed-up techniques may lead to incompleteness,
i.e., their application may report spurious leaks. In this case,
the equivalence relation computed by D will be finer
than ≈E , which corresponds to an over-approximation of the
maximal information leakage.

Out method applies self-composition, which doubles the
program size. It is possible to avoid duplication of some
parts of the program by making related statements share the
same control-flow constructions, as proposed in [38].

5. Implementing DQ

In this section, we outline the implementation of a push-
button tool for the quantitative information flow analysis of
C programs, based on the algorithm DQ presented
in this paper. We show how all of the building blocks on
which DQ is based can be instantiated and combined.
In Section 6, we report on experimental results obtained by
using our tool to analyze a number of example programs.

5.1. Language

We use a subset of C as the programming language.
In particular, we allow programs to contain all control
flow statements and assignments to scalar variables. As the
expression language, we use linear arithmetic, i.e. integer
variables with addition and comparison operators. We use
propositional logic with propositions in linear arithmetic to
represent the equivalence relations R and the set E.

As a convention, we assume that the high and low input
states of a program (i.e. Ihi and Ilo) are stored in variables
named h1, . . . , hn and l1, . . . , lm, respectively. We sometimes
use single input variables h and l to comprise all of the
high and low input to a program, respectively, and we write
P(h, l) to emphasize that variables h and l occur in P.

5.2. Implementing D

The building blocks for D are methods for checking
Confine, for computing Refine, and for detecting leaks. We
show how all three can be implemented using the software
model checker A and the Omega calculator, which is
a tool for manipulating formulas in linear arithmetic with
quantifiers.

Implementing Confine. We cast the check for
ConfineP(R, E) as a reachability problem, which we
solve using the model checker A. As a preprocessing
step, we create a modified copy P of P, where we replace
every program variable x that occurs in P by a fresh variable
x. This ensures that P and P have disjoint variable sets.
The existence of an R-leak corresponds to the reachability
of the error state in the following program.

if (l = l ∧ l ∈ E ∧ (h, h) ∈ R)
P(h, l)
P(h, l)
if l , l

error
return

We apply A to this reachability problem. If error is
reachable, A outputs a path to error. As the variable
sets of both copies of P are disjoint, the leak (π, η) can
be reconstructed from this path. This directly leads to an
implementation of LeakP(E,R). As we will explain below,
this direct computation of LeakP(E,R) can be avoided due
to extra information provided by A.

Implementing Refine. A not only returns the path to
error, but also a formula in linear arithmetic that character-
izes all initial states from which the error state is reachable
along the counterexample path. This formula characterizes
sets of pairs ((h, l), (h, l)) of initial states and can thus be
interpreted as a binary relation R over I. We project out the
low variables from R, i.e. we define RE ⊆ Ihi × Ihi as

RE ≡ {(h, h) | ∃l ∈ E : ((h, l), (h, l)) ∈ R} .

RE characterizes all pairs of high inputs from which the
error state can be reached with an experiment from E. The
complement of RE characterizes all pairs of high initial states
from which the error state is not reachable along (π, η) with
an experiment from E, i.e., it corresponds to RefineE(π, η):

RefineE(π, η) ≡ Ihi × Ihi \ RE .

9

In our implementation, E is represented as an assertion in
linear arithmetic, and we perform the projection and set
difference using the Omega calculator.

5.3. Implementing Q

The building blocks for the algorithm Q presented
in Section 4.1 are operations on sets and relations, such
as finding models, determining equivalence classes, and
counting the number of elements (the function Count). First,
we show how to implement the relational operations using
the Omega calculator. Subsequently, we show how to count
the number of elements in a set using the Lattice Point
Enumeration Tool (LE).

Implementing the relational operations. The example
command of the Omega calculator implements the operation
of picking an element from Q, see line 4 in Figure 2.
The computation of an equivalence class in line 5 can be
implemented using relational composition:

[s]R ≡ {s} ◦ R = {t ∈ Ihi | (s, t) ∈ R} .

The loop body in Figure 2 (except for the call to Count
in line 5) thus maps to the following input of the Omega
calculator:

B:= S.R;

Q:= Q-B;

S:= example Q;

Here R and Q represent R and Q, respectively. S corresponds
to {si}, B corresponds to [si]R, and “.” denotes the relational
composition. The result of successively applying these op-
erations to Q = Ihi and the relation R given by D is the
set

Ihi/R = {B1, . . . , Bn}

of R-equivalence classes, each represented as a linear arith-
metic proposition in disjunctive normal form.

Implementing Count. An R-equivalence class B is rep-
resented as a conjunction φ ≡ c1 ∧ · · · ∧ cm of atomic
propositions ci ≡

∑n
j=1 ai jh j ≤ bi, with i ∈ {1, . . . ,m} and

can be interpreted as a system of linear inequalities

A h ≤ b ,

where A = (ai j), h = (h1, . . . , hn), and b = (b1, . . . , bm). It is
not difficult to see that the number of satisfying assignments
of φ (i.e., the size of B) corresponds to the number of integer
solutions to this system of inequalities. For counting the
number of solutions of two disjuncts φ = φ1∨φ2, we compute

Count(φ) ≡ Count(φ1) + Count(φ2) − Count(φ1 ∧ φ2) .

This easily generalizes to the DNF formulas output by the
Omega calculator.

For efficiency reasons, A assumes that program vari-
ables range over rational numbers. As a consequence, the
equivalence classes computed by the Omega calculator may
be of unbounded size. In practice, however, the values of
integers variables will be bounded by the range of their
respective types. To incorporate such bounds, we extend A
by additional constraints of the form

In h ≤ bu and − In h ≤ bl .

Here, In denotes the identity matrix of dimension n and bu

and bl are vectors of upper and lower bounds, respectively.
We note that such a bounding step does not compromise
the soundness of our approach, however it might sacrifice
completeness, e.g., if the input leading to a leak lies outside
of the bounds.

Applying LE to the following system of inequalities A
In

−In

 h ≤

 b
bu

bl

yields the number of elements of the equivalence class B
represented by φ. For all of our examples, the running time
of LE was largely independent of the bounds bu and bl.

6. Experimental results

In this section, we report on experimental results obtained
by applying our technique to determine the information that
is revealed by a program. As examples, we analyze programs
for checking passwords, debiting from an electronic purse,
and computing sum queries.

6.1. Password checker

Consider a password checker that receives a secret pass-
word h and a candidate password l, and outputs whether the
candidate password was correct, i.e. whether l = h.

if (l==h)

l=1;

else

l=0;

A password check necessarily reveals partial information
about the password. We use our approach to characterize
this information for two different experiments. As shown in
Section 5.2, the set of experiments E determines how the
low variables are eliminated from the equivalence relation
computed by A. In Section 5.2, this elimination is per-
formed in each refinement step. For a uniform presentation
of both experiments, we postpone this elimination until after
the computation of the complete relation.

Then the relation R computed by A is

R ≡ (h = l ∧ l − h ≤ −1) ∨ (h = l ∧ l − h ≥ 1)

∨ (h = l ∧ h − l ≤ −1) ∨ (h = l ∧ l − h ≤ −1)

10

We consider two experiments, where the first corresponds to
a single password guess and the second corresponds to an
exhaustive search of the password space.

Single password guess. The experiment E = {x} corre-
sponds to the guess of a single password x. The relation
≈{x} captures the information that is leaked in this guess and
is obtained from R as described in Section 5.2. For x = 0,
the equivalence classes computed by Q are

B1 ≡ h = 0
B2 ≡ h ≤ −1 ∨ h ≥ 1 ,

which reflects that a correct guess reveals the password while
all incorrect (nonzero, in this case) passwords cannot be
distinguished. We obtain |B1| = 1 and |B2| = 4294967295 if
the passwords are nonnegative 32-bit integers. For uniformly
distributed passwords, the attacker’s uncertainty about the
password hence drops from 32 bits to

1
232

2∑
i=1

|Bi| log |Bi| = 31.999999992

after a single guess.

Exhaustive search. The experiment E = Ilo corresponds
to exhaustively running P on all password candidates. A
representation ≈E of the leaked information is obtained from
A’s output as described in Section 5.2. We obtain

≈Ilo≡ h = h ,

which is the identity relation on Ihi.
This result confirms the fact that the attacker can deter-

mine every password by exhaustive search. His remaining
uncertainty about the password will then be 0. Note that
we derived this interpretation from the output of D
(i.e., without applying Q). Q enumerates all ≈Ilo -
equivalence classes, which is infeasible for large password
spaces. The overall running time of the analysis was less
than 2 seconds.

6.2. Electronic purse

Consider a program that receives as input the balance h
of a bank account and debits a fixed amount l from this
account until the balance is insufficient for this transaction,
i.e. until h < l.

lo=0;

while(h>=l){

h=h-l;

lo=lo+1;

}

Upon termination, the program outputs the number of times
l has been successfully subtracted from h in the variable lo.

This number reveals partial information about the inital bal-
ance of the account. We use our approach to automatically
quantify this information.

The number of loop iterations depends on the account
balance h. Without any restriction on the range of the input
values, the number of program paths (and leaks) is infinite,
and D will not terminate. To avoid this, we bound the
maximal account balance by 20 (i.e. h < 20). We consider a
single experiment where l = 5. With these parameters, D
computes the following equivalence relation on {0, . . . , 19}

≈{5}≡ 10 ≤ h ∧ h ≤ 14 ∧ 10 ≤ h ∧ h ≤ 14

∨ 5 ≤ h ∧ h ≤ 9 ∧ 5 ≤ h ∧ h ≤ 9

∨ 0 ≤ h ∧ h ≤ 4 ∧ 0 ≤ h ∧ h ≤ 4

∨ 15 ≤ h ∧ h ≤ 19 ∧ 15 ≤ h ∧ h ≤ 19 ,

Given ≈{5}, Q computes the equivalence classes

B1 ≡ 0 ≤ h ≤ 4
B2 ≡ 5 ≤ h ≤ 9
B3 ≡ 10 ≤ h ≤ 14
B4 ≡ 15 ≤ h ≤ 19 ,

from which we obtain |B1| = |B2| = |B3| = |B4| = 5. This
result confirms the intuition that our program leaks the result
of integer division of h by l.

For this example, the structure of the equivalence classes
is simple and can be directly interpreted. We also give
an information-theoretic interpretation in terms of guessing.
If the value of h is chosen from a uniform distribution
(modeled by a random variableU), the number of guesses to
correctly determine the purse balance is G(U) = 10.5. Using
Proposition 3, the expected number of guesses decreases to

G(U|V≈{5}) =
1

2 · 20

4∑
i=1

|Bi|
2 +

1
2

= 3

by observing the low output of the program.
The overall running time for analyzing this example

is dominated by the model checker’s running time of 24
seconds. The running times for computing the equivalence
classes and determining their size are each below one
second.

6.3. Sum query

Consider a program that receives as input n secret integers
and computes and outputs their sum. We use our approach to
characterize the information that is revealed by this program.
This result corresponds to the information that a sum query
reveals about a database record. For our example, we choose
n = 3 and represent the input by variables h1, h2, h3, i.e., we
analyze the program

l=h1;

11

l=l+h2;

l=l+h3;

The equivalence relation synthesized by D is

R ≡ h3 = h1 + h2 + h3 − h1 − h2 .

For determining the sizes and the number of the ≈-
equivalence classes, we choose 0 ≤ hi < 10 for i ∈ {1, 2, 3}.
Q computes equivalence classes of the form

Bi ≡ h1 + h2 + h3 = i − 1

for i ∈ {1, . . . , 28} with respective sizes |B1|, . . . , |B28| of
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63,
55, 45, 36, 28, 21, 15, 10, 6, 3, 1.

For independently chosen and uniformly distributed input
values (modeled by a random variable U) the expected
number of guesses to correctly determine the input is

G(U) = 500.5 .

The average number of guesses is reduced to

G(U|V≈) =
1

2 · 103

28∑
i=1

|Bi|
2 +

1
2

= 28.126

by observing the output of the analyzed program.
An analysis with the minimal guessing entropy shows

Ĝ(U|V≈) = 1 ,

which additionally reveals that there are secrets that are very
easy to guess, a fact that is not revealed by any average-case
measure. This illustrates the benefit of combining multiple
information measures in one analysis.

7. Conclusion

We presented the first automatic method for information-
flow analysis that discovers what information is leaked and
computes its comprehensive quantitative interpretation.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for
information flow in object-oriented programs. In Proc.
Symposium on Principles of Programming Languages (POPL
’06), pages 91–102. ACM Press, 2006.

[2] R. B. Ash. Information Theory. Dover Publications Inc.,
1990.

[3] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Au-
tomatic predicate abstraction of C programs. In Proc. ACM
Conference On Programming Language Design and Imple-
mentation (PLDI ’01), volume 36 of ACM SIGPLAN Notices,
2001.

[4] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In
Proc. IEEE Symposium on Security and Privacy (S&P ’08),
pages 339–353. IEEE Computer Society, 2008.

[5] G. Barthe, P. D’Argenio, and T. Rezk. Secure Information
Flow by Self-Composition. In Proc. IEEE Computer Security
Foundations Workshop (CSFW ’04), pages 100–114. IEEE
Computer Society, 2004.

[6] A. Barvinok. A Polynomial Time Algorithm for Counting
Integral Points in Polyhedra when the Dimension is Fixed.
Mathematics of Operations Research, 19:189–202, 1994.

[7] C. Cachin. Entropy Measures and Unconditional Security in
Cryptography. PhD thesis, ETH Zürich, 1997.

[8] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang.
Compositional shape analysis by means of bi-abduction. In
Proc. Symposium on Principles of Programming Languages
(POPL ’09), pages 289–300. ACM Press, 2009.

[9] D. Clark, S. Hunt, and P. Malacaria. Quantitative Information
Flow, Relations and Polymorphic Types. J. Log. Comput.,
18(2):181–199, 2005.

[10] D. Clark, S. Hunt, and P. Malacaria. A static analysis for
quantifying information flow in a simple imperative language.
Journal of Computer Security, 15(3):321–371, 2007.

[11] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Satabs: SAT-based predicate abstraction for ANSI-C. In Proc.
Intl. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’ 05), volume 3440 of LNCS,
pages 570–574. Springer, 2005.

[12] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in
Information Flow. In Proc. IEEE Computer Security Founda-
tions Workshop (CSFW ’05), pages 31–45. IEEE Computer
Society, 2005.

[13] E. Cohen. Information Transmission in Sequential Programs.
In Foundations of Secure Computation, pages 297–335. Aca-
demic Press, 1978.

[14] B. Cook, A. Podelski, and A. Rybalchenko. Termination
proofs for systems code. In Proc. ACM Conference on
Programming Language Design and Implementation (PLDI
’06), pages 415–426. ACM Press, 2006.

[15] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. Symposium on
Principles of Programming Languages (POPL ’77), pages
238–252, 1977.

[16] A. Darvas, R. Hähnle, and D. Sands. A Theorem Proving
Approach to Analysis of Secure Information Flow. In Proc.
International Conference on Security in Pervasive Computing,
LNCS 3450, pages 193 – 209. Springer, 2005.

[17] D. E. Denning. Cryptography and Data Security. Addison-
Wesley, 1982.

[18] R. Giacobazzi and I. Mastroeni. Abstract Non-Interference:
Parameterizing Non-Interference by Abstract Interpretation.
In Proc. ACM Symposium on Principles of Programming
Languages (POPL ’04), pages 186–197. ACM, 2004.

12

[19] S. Graf and H. Saı̈di. Construction of Abstract State Graphs
with PVS. In Proc. Intl. Conference on Computer Aided
Verification (CAV ’97), volume 1254 of LNCS, pages 72–83.
Springer, 1997.

[20] J. W. Gray. Toward a Mathematical Foundation for Infor-
mation Flow Security. Journal of Computer Security, 1(3-
4):255–294, 1992.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from proofs. In Proc. ACM Symposium on
Principles of Programming Languages (POPL ’04), pages
232–244. ACM Press, 2004.

[22] R. Jhala and K. L. McMillan. Array abstractions from proofs.
In Proc. Intl. Conference on Computer Aided Verification
(CAV ’07), volume 4590 of LNCS, pages 193–206. Springer,
2007.

[23] B. Köpf and D. Basin. Timing-Sensitive Information Flow
Analysis for Synchronous Systems. In Proc. European
Symposium on Research in Computer Security (ESORICS
’06), LNCS 4189, pages 243–262. Springer, 2006.

[24] B. Köpf and D. Basin. An Information-Theoretic Model for
Adaptive Side-Channel Attacks. In Proc. ACM Conference
on Computer and Communications Security (CCS ’07), pages
286–296. ACM, 2007.

[25] J. A. D. Loera, D. Haws, R. Hemmecke, P. Huggins, J. Tauzer,
and R. Yoshida. LattE. http://www.math.ucdavis.edu/ latte/.
[Online; accessed 08-Nov-2008].

[26] G. Lowe. Quantifying Information Flow. In Proc. IEEE
Computer Security Foundations Workshop (CSFW ’02), pages
18–31. IEEE Computer Society, 2002.

[27] P. Malacaria. Assessing security threats of looping con-
structs. In Proc. Symposium on Principles of Programming
Languages (POPL ’07), pages 225–235. ACM Press, 2007.

[28] J. L. Massey. Guessing and Entropy. In Proc. IEEE
International Symposium on Information Theory (ISIT ’94),
page 204. IEEE Computer Society, 1994.

[29] S. McCamant and M. D. Ernst. Quantitative information flow
as network flow capacity. In Proc. Conf. on Programming
Language Design and Implementation (PLDI ’08), pages
193–205, 2008.

[30] J. K. Millen. Covert Channel Capacity. In Proc. IEEE
Symposium on Security and Privacy (S&P ’87), pages 60–
66. IEEE Computer Society, 1987.

[31] A. Podelski and A. Rybalchenko. ARMC: the logical choice
for software model checking with abstraction refinement. In
Proc. Intl. Symposium on Practical Aspects of Declarative
Languages (PADL ’07). Springer, 2007.

[32] E. Rosser, W. Kelly, W. Pugh, D. Wonnacott,
T. Shpeisman, and V. Maslov. The Omega Project.
http://www.cs.umd.edu/projects/omega/. [Online; accessed
05-Nov-2008].

[33] A. Sabelfeld and A. C. Myers. Language-based Information-
Flow Security. IEEE J. Selected Areas in Communication,
21(1):5–19, 2003.

[34] A. Sabelfeld and A. C. Myers. A model for delimited
information release. In Proc. Intl. Symposium on Software
Security (ISSS ’03), LNCS 3233, pages 174–191. Springer,
2004.

[35] A. Sabelfeld and D. Sands. Dimensions and Principles of
Declassification. In Proc. IEEE Workshop on Computer
Security Foundations (CSFW ’05), pages 255–269. IEEE
Computer Society, 2005.

[36] C. E. Shannon. A Mathematical Theory of Communication.
Bell System Technical Journal, 27:379–423 and 623–656, July
and October 1948.

[37] G. Smith. On the foundations of quantitative information
flow. In Proc. Intl. Conference of Foundations of Software
Science and Computation Structures (FoSSaCS ’09), LNCS
5504, pages 288–302. Springer, 2009.

[38] T. Terauchi and A. Aiken. Secure information flow as a safety
problem. In Proc. Intl. Symposium on Static Analysis (SAS
’05), LNCS 3672, pages 352–367. Springer, 2005.

[39] H. Unno, N. Kobayashi, and A. Yonezawa. Combining Type-
Based Analysis and Model Checking for Finding Counterex-
amples Against Non-interference. In Proc. Workshop on
Programming Languages and Analysis for Security (PLAS
’06), pages 17–26. ACM Press, 2006.

[40] J. T. Wittbold and D. M. Johnson. Information Flow in
Nondeterministic Systems. In Proc. IEEE Symposium on
Security and Privacy (S&P ’90), pages 144–161. IEEE Com-
puter Society, 1990.

[41] S. Zdancewic and A. C. Myers. Robust declassification. In
Proc. IEEE Computer Security Foundations Workshop (CSFW
’01), pages 15–23. IEEE Computer Society, 2001.

13

