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Abstract—Timing-based side-channel attacks have matured
from an academic exercise to a powerful attack vector in the hand
of real-world adversaries. A widely deployed countermeausure
against such attacks is to reduce the accuracy of the clocks
that are available to adversaries. While a number of high-profile
attacks show that this mitigation can be side-stepped, there has
not been a principled analysis of the degree of security it provides
until now.

In this paper, we perform the first information-flow analysis
with respect to adversaries with coarse-grained clocks. To this
end, we define an adversary model that is parametric in the
granularity of the clock and connect it with a system model based
on timed automata. We present algorithms for translating such a
system to an information-theoretic channel, which enables us to
analyze the leakage using standard techniques from quantitative
information-flow analysis.

We use our techniques to derive insights about the effect of
reducing clock resolution on security. In particular, (1) we show
that a coarse-grained clock might leak more than a fine-grained
one, (2) we give a sufficient condition for when increasing the
grain of the clock we achieve better security, and (3) we show
that the attack techniques used in the literature form a strict
hierarchy in terms of the information an adversary can extract
using them.

Finally, we illustrate the expressiveness of our development on
a case study of a system that uses RSA signatures.

Index Terms—timing channels, timed automata, quantitative
information flow

I. INTRODUCTION

A timing channel is a mechanism which reveals infor-
mation through the timing behaviour of a system. Timing
channels in computer systems allow adversaries to obtain
confidential information and hence pose an important threat
to the system’s security. In particular, information conveyed
by timing channels has been used by adversaries to recover
cryptographic keys, where the timing channel is built by
measuring cryptographic or cache-dependent operations, and
by malicious websites which correlate this information with
the internal state of a victim who visits the website [1]–[7].

Defeating timing channels is important but challenging.
There are two main approaches to defeating timing channels.
The first approach relies on closing or mitigating the channel.
Examples of this approach include:
• constant-time software [8], which is a coding discipline

that forbids that branching decisions, memory access patterns,
and variable-latency instructions depend on secrets.
• input blinding, which decorrelates the payload of crypto-

graphic algorithms from the execution time, making it prov-
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Fig. 1: The countermeasure of decreasing clock resolution.

ably difficult for the adversary to recover the cryptographic
key [9], [10].
• predictive mitigation techniques, which group timing ob-

servations into epochs of increasing duration, thereby provably
reducing the amount of leaked information [11].

The other approach relies on reducing the adversary’s ability
to make precise timing observations, e.g., by decreasing an
adversary’s clock resolution or removing the clock entirely. A
clock is a counter that is being increased every after a fixed
period. Increasing this period results in a clock with lower
resolution, changing the perception of the adversary regarding
the timing behaviour of the system, and hence makes it more
difficult for it to build a timing channel.

This countermeasure is attractive because it does not imply
performance overhead, while it works for adversaries that run
on the same platform (i.e. not for remote attackers where one
cannot control the clock). In particular, it has been proposed in
the literature for mitigation of interrupt-related timing channels
[12] and deployed in all major browser implementations after
the first browser-based side-channel attacks [5].

Fig. 1 shows an example of the countermeasure. The clock
on the top is being increased with a period of g, and it is
able to distinguish between two events that arrive at times t1
and t2 resp. since at time t1 the clock has been increased 4
times, while at t2, 5 times. By increasing this period by a
factor of 2 · g (Fig. 1 bottom) the times of the two events
become indistinguishable since in both cases the clock will be
increased only once.

Unfortunately, low-resolution clocks are not an effective
defense against many kinds of attacks. Several authors have
successfully side-stepped this defense by building their own
high-resolution clocks from primitives such as low-resolution
clocks and simple counter processes [2], [13]–[15]. Therefore
a principled analysis of this countermeasure and its security
guarantees is needed.



Our approach. In this paper, we perform the first
information-flow analysis w.r.t. adversaries with low-
resolution clocks.

We define clock resolution based on the period of the
clock, which we call grain. Our analysis relies on a notion
of adversaries with clocks that is parametric in the clock’s
grain and on the number of timing observations they can
make. We connect this adversary to a victim modeled as a
timed automata [16], [17] system with either deterministic or
stochastic time semantics. We show that the resulting model
is expressive enough to capture the essential aspects of state-
of-the-art attacks [2], [13]–[15], such as the clock-edge, and
the one-pad, and we present a novel timing technique, which
we call the co-prime technique.

In order to facilitate an information-flow analysis of the
model, we present a novel algorithm that, given a system of
timed automata and an adversary with a clock, constructs a
channel matrix that represents the information that the adver-
sary can extract from the system. The main challenge of the
construction is computing the probabilities of the adversary’s
timing observations, since (stochastic) timed automata seman-
tics are defined based on general probability measures. The
construction enables us to leverage state-of-the-art techniques
for quantitative information-flow analysis for formalizing and
computing leakage to adversaries with fine-grained clocks.
Using this approach, we derive the following insights:
• While it is well-known that coarse-grained clocks can be

bypassed using attack techiniques such as the clock-edge and
the one-pad, we show here that a coarse-grained clock might
leak even more than a fine-grained clock without using any
attack technique.
• We provide sufficient conditions for when a coarse-

grained clock leaks less than a fine-grained one. In particular,
we show that when the system is deterministic and we increase
the grain of the clock by a multiple, the corresponding timing
channel leaks less information.
• We show that the different techniques to construct fine-

grained clocks, namely the one-pad technique, the clock-edge
technique, and the co-prime technique, form a strict hierarchy
in terms of the amount of information the adversary can
extract.
Finally, we illustrate the expressiveness of our development
on a stochastic system which implements an RSA encryption
scheme to achieve data integrity.

Summary of contributions In summary, we perform the
first principled information-flow analysis of timing leaks w.r.t.
adversaries with clocks of reduced resolution. Our analysis
relies on a novel translation of timed automata to information-
theoretic channels, which we use to derive quantitative and
qualitative insights into the effectiveness of existing attacks
and countermeasures.

Organization of the paper. In Section 2, we recall some
basics of timed automata, and in Section 3 we give the models
of timed automata systems and adversaries with clocks. In
Section 4, we recall the basics of quantitative information
flow, and we present our algorithm for constructing timing
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Fig. 2: An example of a (stochastic) timed automaton.

channels of systems. In Section 5, we present our theoretical
insights for the case of timing channels of deterministic
systems, and the timing-techniques one-pad, clock-edge and
co-prime. In Section 6, we perform our case study. Section
7, and 8 discusses related work and conclusions respectively.
Finally, Appendix includes proofs of our results and some
more detailed calculations of our case study.

II. TIMED AUTOMATA

In this section we recall some basics of timed automata.
We describe time with the set of non-negative real numbers

R≥0. Timed automata [16], [17] are finite automata extended
with real-valued variables called dense clocks, that are used to
record the elapse of time.

Dense clocks are increased simultaneously, have infinite
precision and can be reset. The transitions of the automaton
are guarded with constraints over dense clocks, restricting the
possible timing behaviour of the automaton.

Formally now, let X be a finite set of dense clocks taking
values from R≥0. A valuation is a mapping δ : X 7→ R≥0. Let
now D(X) be the set of valuations over X, then for a valuation
δ ∈ D(X) we have the following: if t ∈ R≥0 we write δ + t
for the valuation that assigns δ(x) + t for all x ∈ X and if
X ∈ 2X is a set of dense clocks we write δ[X 7→ 0] for the
valuation that assigns the value 0 to all the dense clocks in
X and leaves the rest of the them unchanged. A guard b is
a finite conjunction of constraints of the form x op n where
op ∈ {<,≤,=,≥, >}, or the trivial constraint tt, and x is a
dense clock. Let now G(X) be the set of guards over X. For a
valuation δ and a guard b we write δ |= b whenever δ satisfies
b in the usual way.

Definition 1. (Timed Automaton) A timed automaton TA =
(Q, q◦,E, I) is quadruple where

• Q is a finite set of locations.
• q◦ is the initial location of the automaton.
• E ⊆ Q×G(X)× 2X×Q is a finite set of guarded edges.
• I : Q 7→ G(X) is a labelling function that imposes an

invariant on each location.

The edges are annotated with actions and take the form
(qs, b→X, qt) where qs ∈ Q is the source location and qt ∈ Q
is the target location. The action b → X consists of a guard b
that has to be satisfied in order for the dense clock variables
X to reset. To cater for special cases we shall allow to omit
the guard b when it is equal to tt and to omit the dense clock
resets when X is empty.



The semantics of a timed automaton are given by a tran-
sition system whose configurations have the form 〈q, δ〉 ∈
Config ⊆ Q × D(X) and the transitions are described by
an initial delay that increases the values of all the dense
clocks followed by an action. Therefore, whenever e =
(qs, b → X, qt) is in E we have the transition :

〈qs, δ〉
t,e−→ 〈qt, δ′〉 if


t ≥ 0,
δ + t |= I(qs) ∧ b,
δ′ = (δ + t)[X 7→ 0],
δ′ |= I(qt)

where t corresponds to the initial delay. The rule ensures that
after the delay t the invariant and the guard are satisfied with
the valuation δ+ t, and then updates the valuation δ+ t to δ′

by resetting the dense clocks in X . Finally, it ensures that the
invariant is satisfied in the resulting configuration that uses the
valuation δ′. The initial configuration of the automaton have
all the dense clocks initialised to 0, and has the form 〈q◦, λx.0〉
where λx.0 |= I(q◦), and we write γq◦ for 〈q◦, λx.0〉.

Definition 2. (Run). A run of a configuration γ = 〈q, δ〉 ∈
Config is a sequence (possibly infinite)

〈q0, δ0〉
t1,e1−→ ...

tn,en−→ 〈qn, δn〉
tn+1,en+1−→ ...

where 〈q0, δ0〉 = 〈q, δ〉 and we write Runs(γ) for the set of
runs of γ.

Finally, a run of a timed automaton is described by a run
ρ ∈ Runs(γq◦) of the initial configuration γq◦ and we write
Runs(TA) for Runs(γq◦).

We now give our notion of determinism for timed automata

Definition 3. (Deterministic timed automaton). A timed
automaton TA is deterministic whenever Runs(TA) = {ρ}
(for some run ρ).

Example 1. Fig. 2 depicts a timed automaton with two
locations q◦ (the initial), q and a dense clock x. The automaton
moves from q◦ to q after delaying 5 or 7 time units, and
from q to q◦ after delaying for a time between 5 and 10. The
dense clock x is reset after each move. Formally, we have
that TA = (Q, q◦,E, I), where Q = {q◦, q}, E = {e1, e2, e3}
where e1 = (q◦, x = 5 → x, q), e2 = (q◦, x = 7 → x, q),
e3 = (q, x ≥ 5 → x, q◦) and the invariant mapping is
I = [q◦ 7→ tt, q 7→ x ≤ 10]. A prefix of an example run
of the automaton is

〈q◦, [x 7→ 0]〉 5,e1−→ 〈q, [x 7→ 0]〉 5.5,e3−→
〈q◦, [x 7→ 0]〉 7,e2−→ 〈q, [x 7→ 0]〉 7.97,e3−→ 〈q◦, [x 7→ 0]〉...

We define stochastic semantics for timed automata based on
[18], [19]. Stochastic timed automata are stochastic processes,
where at each transition the automaton first chooses randomly
a delay and then an edge. We start by defining some auxiliary
operators.

Let TA = (Q, q◦,E, I) be a timed automaton, then for a
configuration γ ∈ Config and an edge e ∈ E we define

Int(γ, e)=
{
t ∈ R≥0 | ∃γ′ ∈ Config : γ

t,e−→ γ′
}

to be the set of delays such that the edge e can be taken from
γ after such a delay, and we write

Int(γ) =
⋃
e∈E

Int(γ, e)

for the set of all possible delays that γ can perform.1 Finally,
for a configuration γ ∈ Config we write

Enab(γ) = {e | e ∈ E : Int(γ, e) 6= ∅}

for the set of enabled edges of γ (i.e the ones that at least one
transition is possible by taking them). We are now ready to
give the definition of stochastic timed automaton.

Definition 4. (Stochastic Timed Automata.) Given a timed
automaton TA = (Q, q◦,E, I), a stochastic timed automaton
STA = (TA, (µγ)γ∈Config, (κγ)γ∈Config) is a timed automaton
equipped with the families (µγ)γ∈Config, (κγ)γ∈Config where

• for each configuration γ ∈ Config, µγ : B(R≥0) 7→
[0, 1] is a probability measure over the Borel2 σ-algebra
B(R≥0) such that µγ(Int(γ)) = 1.

• for each configuration γ ∈ Config, κγ : E 7→ [0, 1] is a
probability distribution over the set of edges such that for
all e ∈ E : κγ(e) > 0 iff e ∈ Enab(γ), and we also have
that

∑
e∈Enab(γ) κ(e) = 1

For a run of the automaton now, at each transition (in the
run) from a configuration 〈q, δ〉, first, a delay t is chosen
according to µ〈q,δ〉 and then an edge according to κ〈q,δ+t〉.

Example 2. Back to Example 1, a stochastic version of the
automaton is depicted in Fig. 2, where for configurations of the
initial location q◦ the delay is chosen according to a (discrete)
probability distribution that is expressed with a probability
mass function (Fig. 2 left) that assigns 2

3 and 1
3 to the delays

5 and 7 resp., while for the configurations of the location
q the delay is chosen according to a (continuous) uniform
probability distribution that is expressed using the density
function (Fig. 2 right) over the interval [5, 10]. In both cases
after the delay has been chosen, there is exactly one enabled
edge, that is chosen with probability 1.

III. TIMED SYSTEMS AND ADVERSARIES WITH CLOCKS

In this section we give our models of systems of timed
automata and adversaries with clocks. Systems of timed
automata, or simply timed systems, will be used to model
the timing behaviour of a system that operates on some
secret provided by a victim. An adversary then tries to infer
information of the victim’s secret by measuring the timing
behaviour of the system using a clock.

1As in [18], [19] we shall assume that for all γ ∈ Config, Int(γ) 6= ∅, that
is that the automaton is deadlock-free.

2The Borel set B(R≥0) is the smallest σ-algebra generated by the open
sets of R≥0.



0 2 4 6 8 10
0

2

4

6

8

t

c1(t) = btc
c2(t) =

⌊
t
2

⌋
· 2

Fig. 3: Two clocks c1 and c2 with grains 1 and 2 respectively.

A. Timed Systems

Let I be a finite set of secret inputs of the victim. A timed
system S is either a family of deterministic timed automata
(Qi, q

i
◦,Ei, Ii)i∈I , or a family of stochastic timed automata

((Qi, q
i
◦,Ei, Ii), (µγ)

i
γ∈Config, (κγ)iγ∈Config)i∈I , where for each

i ∈ I , the automaton TAi = (Qi, q
i
◦,Ei, Ii) describes the

timing behaviour of the system on input i ∈ I . In the first
case the system will be called deterministic and in the second
stochastic. We will also write Q =

⋃
i∈I Qi, E =

⋃
i∈I Ei and

Runs(S) =
⋃
i∈I Runs(TAi).

Example 3. Consider the input set I = {i1, i2} and the
stochastic system S, where for the input i1 the behaviour of S
is described by the stochastic timed automaton from Example
2. For input i2 the behaviour of S is given by a variation of
the stochastic timed automaton of Example 2, where now the
probability measure over the delays for the configurations of
the initial location is given by a discrete uniform distribution
that is described by a probability mass function that assigns
1
2 to both delays 5 and 7.

B. Clocks

The main tool of the adversary for building a timing channel
from a timed system is a clock. A clock is a counter that is
being increased after a constant period g, discretizing in this
way the time domain R≥0 in buckets of size g.

This fixed period g between two consecutive increments of
the clock is called its grain or granularity. The grain of the
clock is the smallest time unit that it can measure. A point in
time where a clock is being incremented is called a clock-edge,
and this increment is equal to the clock’s grain g.

Formally, a clock is given by the following definition

Definition 5. (Clock.) A clock c : R≥0 7→ N with granularity
or grain g ∈ N>0 is a step function over the time domain

R≥0, where at time t ∈ R≥0 the value of c is

c(t) =

⌊
t

g

⌋
· g

and b.c is the floor function.

A fine-grained clock gives more precise measurements, and
intuitively one could think that an adversary with such a clock
is a bigger threat in comparison to one with a coarse-grained
clock; however, we will show later that this is not always the
case.

Example 4. Consider the clocks c1 and c2 of grain 1 and 2
respectively, given in Fig. 3. For the time points 0, 1.3, 2.5,
3.6... the value of c1 is 0, 1, 2, 3... ,while for c2 we have 0, 0,
2, 2,... For every clock-edge of c2 we have two clock-edges
of c1. The clock-edges of c1 happen at the time points 1, 2,
3,... while the ones of c2 at the time points 2, 4, 6,...

We now give two facts, which will be later used in the
proofs of our two main theorems (Theorem 3 and Theorem 4
resp.).

Fact 1. Let c1 and c2 be two clocks with grains g1 and g2
respectively. If g2 is a multiple of g1 then ∀t1, t2 ∈ R≥0 :
(c1(t1) = c1(t2)⇒ c2(t1) = c2(t2))

Fact 2. Let c be a clock with grain g and n ∈ N, then for
t1, t2 ∈ R≥0: c(t1 + n) = c(t2 + n) ⇔ c(t1 + (n mod g)) =
c(t2 + (n mod g)).

C. Adversaries with Clocks

Let S be a (deterministic or stochastic) system. We model
the view of an adversary on the runs of a system as a function
viewc : Runs(S) 7→ O that maps runs to a finite set of
sequence of observations O ⊆ N+, obtained by making timing
measurements using a clock c.

In particular, for the system we assume a finite set of public
edges Epub ⊆ E such that whenever the system performs
a transition using this edge the adversary makes a timing
observation using his clock (to be explained shortly).

We consider adversaries that make k (positive integer)
number of timing observations and we also assume that each
run of the system visits at least k times the public edges in
Epub (not necessarily all of them).

For a run ρ = γ0
t1,e1−→ γ1....

tn,en−→ γn... ∈ Run(S), let
j1, ..., jk to be the unique ordered sequence of indices of the
first k public edges appearing in ρ, we then have that the view
of the adversary on ρ is given by

viewc(ρ) = (c(t′1), c(t
′
2), ..., c(t

′
k))

where for i ∈ {1, ..., k}, t′i = t1 + ... + tji is the time
moment, when the adversary performs his i-th observation.
We sometimes refer to the sequence t′1,...,t′k as the k-time
sequence of ρ.

To wrap up everything from above we give the definition
of an attack scenario.



Definition 6. (Attack Scenario). An attack scenario is a
quadruple AS = (S,Epub, c, k) where S is a system, Epub are
the public edges of it, c is the clock of the adversary, and k
is the number of his timing observations.

Example 5. Consider the attack scenario AS = (S,Epub, c, k)
where S is the stochastic system given in Example 3 over the
input set I = {i1, i2}, Epub = E is the set of observable edges
of the system (i.e all the edges are observable), the adversary
is using a clock c with grain g = 5, and performs k=2 timing
observations.

Consider the following prefix of a run of the system that
corresponds to the input i1

〈q◦, [x 7→ 0]〉 5,e1−→ 〈q, [x 7→ 0]〉 5.5,e3−→
〈q◦, [x 7→ 0]〉 7,e2−→ 〈q, [x 7→ 0]〉 7.97,e3−→ 〈q◦, [x 7→ 0]〉...

Since all of the edges are observable and the adversary makes
k = 2 timing observations, the 2-time sequence of ρ is t′1 = 5
and t′2 = t′1 + 5.5 = 10.5. For the values of the clock c at
those two time points we have c(t′1) = 5 and c(t′2) = 10, and
therefore the view of the adversary on ρ is

viewc(ρ) = (c(t′1), c(t
′
2)) = (5, 10)

IV. QUANTIFYING LEAKAGE IN TIMED SYSTEMS

In this section, we give an algorithm that given an attack
scenario constructs the corresponding timing channel. Based
on the timing channel, one can then quantify the leakage of
the timed system using standard measures from quantitative
information-flow. We start by recalling some basics of quan-
titative information-flow.

A. Quantitative Information Flow

For the rest of this subsection we assume a random variable
I with range the secret input space I of a timed system, a
probability distribution pI on I , and a random variable O with
range the public set of timing observations O of the adversary.
Our definitions are based on [20], [21] and all the logarithms
have base two.

The threat of the adversary guessing the secret input with
one try, before making any timing observation, is given by the
min-vulnerability of I defined as

V(pI) = maxi∈IpI(i)

Min-vulnerability expresses that the adversary will choose for
his guess the input that is more probable.

The relationship between the input space and the obser-
vations of the adversary is given by a timing channel TC :
I × O 7→ [0, 1], that is a probability transition matrix, where
for i ∈ I and o ∈ O, TC(i, o) is the probability of O = o
conditioned on I = i (i.e the conditional probability).

The expected probability of the adversary guessing the se-
cret input, given his timing channel, is given by the conditional
min-vulnerability of I and the timing channel TC, by

V(pI ,TC) =
∑
o∈O

maxi∈IpI(i) · TC(i, o)

The min-vulnerability and the conditional min-vulnerability,
can be turned into entropies by taking the negative logarithm
of them [21].

For measuring the leakage of a timing channel we have the
min-leakage [21]

Lmin(pI ,TC) = log
V(pI,TC)

V(pI)

and the min-capacity

Cmin(TC) = suppILmin(pI ,TC)

The min-capacity is the worst-case leakage and it is realised
over a uniform prior pI [20]. Based on min-leakage we can
order timing channels as

Definition 7. (Ordering on Channels) Given a random vari-
able I with range I , two random variables O1, O2 with range
O1 and O2 resp., and the timing channels TC1 : I × O1 7→
[0, 1] and TC2 : I ×O2 7→ [0, 1], we write

TC1 � TC2 if ∀pI : Lmin(pI ,TC1) ≤ Lmin(pI ,TC2)

A special case of a timing channel is a deterministic timing
channel. A timing channel TC : I×O 7→ [0, 1] is deterministic
whenever ∀i ∈ I : ∃o ∈ O : TC(i, o) = 1 (i.e each row of the
channel contains exactly one 1).

Recall [20], [21] that a deterministic channel TC : I×O 7→
[0, 1] gives rise to an equivalence relation (or partition) on I ,
given by

i1 ≡TC i2 iff ∃o ∈ O : TC(i1, o) = 1 = TC(i2, o)

Two secrets are indistinguishable to the the adversary if and
only if they give the same observation through the timing
channel TC. For example if ≡TC is equal to > = I × I then
≡TC describes no leakage since all the secrets are related.
On the other hand if ≡TC is equal to the identity relation
⊥ = {(i, i) | i ∈ I} we have that everything is leaked since
each secret produces a unique observable. In any other case
where the equivalence relation ≡TC is such that ⊥ ⊂≡TC⊂ >,
we have partial information about the secret.

Deterministic channels can be ordered based on their equiv-
alence relation by partition refinement.

Definition 8. (Partition Refinement). Given deterministic
channels TC1 : I × O1 7→ [0, 1] and TC2 : I × O2 7→ [0, 1]
we write TC1 v TC2 if the partition of TC1 is refined by the
partition of TC2.

The following theorem from [20], [21] shows that the leak-
age ordering corresponds to the partition refinement ordering.

Theorem 1. Given deterministic channels TC1 : I × O1 7→
[0, 1] and TC2 : I ×O2 7→ [0, 1] we have

TC1 v TC2 iff TC1 � TC2

B. Timing Channels of Deterministic Systems

We now show how one can construct the timing channel of
an attack scenario where the system is deterministic.



TABLE I: Algorithm for constructing the timing channel
TC(AS) of an attack scenario AS = (S,Epub, c, k)

Step 1. For each i ∈ I let Oi = {viewc(ρ) | ρ ∈ Runs(TAi)}.
Step 2. Let I to be a random variable with range the input set I and
O to be a random variable with range O =

⋃
iOi. For the timing

channel TC(AS) : I ×O 7→ [0, 1], and for i ∈ I , and o ∈ O :

if S deterministic and o ∈ Oi, then set TC(AS)(i, o) = 1.
if S is stochastic and o ∈ Oi, then set TC(AS)(i, o) = Pγ

qi◦
(view−1

c (o)).

Otherwise, set TC(AS)(i, o) = 0.

Let AS = (S,Epub, c, k) be an attack scenario where S =
(TAi)i∈I is a deterministic system. We construct the timing
channel TC(AS) of AS using the algorithm given in TABLE I.
The first step of the algorithm computes for each input i ∈ I ,
the set of its possible observations Oi. Since S is deterministic,
Oi = {o} is a singleton. All the observations of the system
are described by the set O =

⋃
i∈I Oi and taking random

variables I and O over the input set I and the observations
O (resp.), we have the deterministic timing channel TC(AS) :
I × O 7→ [0, 1], that for input i and its unique observation o
it returns 1, otherwise it returns 0. Notice that our algorithm
is independent of our choice of min-leakage to be used as the
measure for quantifying leakage.

C. Probability Measure for Stochastic Timed Automata

To explain the construction for the case of S being stochastic
we need to define a probability measure on the runs of
stochastic timed automata. We will then use this measure to
compute the probabilities of the timing observations of an
adversary.

Let STA = (TA, (µγ)γ∈Config, (κγ)γ∈Config) be a stochastic
timed automaton, we define a probability measure over the set
of Runs(γ) for each γ ∈ Config as in [18], [19]. We start by
giving some helpful definitions.

For an edge e ∈ E we write source(e) = qs for its source
location, and target(e) = qt for its target location. A path
e1....en (n ≥ 1) is a sequence of edges such that for all i ∈
{2, .., n} we have that source(ei) = target(ei−1). For a path
π = e1...en, a configuration γ ∈ Config and a Borel set C
of Rn≥0 (n ≥ 1) (i.e C ∈ B(Rn≥0)) we define the set of C-
constrained cylinders of π as

CylC(γ, π) ={
γ0

t1,e1−→ γ1...γn−1
tn,en−→ γn... ∈ Runs(γ) | (t1, .., tn) ∈ C

}
that is the set of all runs of γ that go through the path π =
e1...en and the time delays t1, ..., tn satisfy the constrain C.

For a path π = e1...en, a configuration γ ∈ Config and
a Borel set C of Rn≥0 (n ≥ 1) we define inductively the
probability measure Pγ . For the base case where π = e we
have that

Pγ(CylC(γ, e)) =

∫
t∈Int(γ,e)

κγ+t(e) · 1C(t)dµγ(t)

where γ + t is γ with its valuation having its dense clocks
increased by t and 1C : R≥0 7→ {0, 1} is the indicator function
defined as

1C(t) =

{
1 if t ∈ C
0 otherwise

The domain of integration3 is over all possible delays t ∈
Int(γ, e) that γ could make by choosing e and would result to
a configuration γ+ t. The function which is integrated then is
the probability κγ+t(e) of choosing e from γ + t, multiplied
by 1C(t), ensuring that t satisfies C.

For the inductive case, where π = e1...en, we have

Pγ(CylC(γ, e1...en)) =∫
t1∈Int(γ,e1)

κγ+t1(e1) · Pγ′(CylCt1 (γ′, e2...en))dµγ(t1)

where γ
t1,e1−→ γ′, and

Ct1 =
{
(t2, ..., tn) ∈ Rn−1≥0 | (t1, ..., tn) ∈ C

}
The explanation is similar to the base case, where now we also
integrate over the probability of the constrained cylinder of the
remaining path e2....en, starting at the resulting configuration
γ′.

The following theorem from [18], [19] shows that Pγ is a
well-defined probability measure.

Theorem 2. For a stochastic timed automaton STA and for
each configuration γ ∈ Config, Pγ is a probability measure
over (Runs(γ),F) where F is the σ-algebra generated by the
constrained cylinders of γ.

Example 6. Consider the stochastic automaton of Example 2.
For the constraint

C =
{
(t1, t2) ∈ R2

≥0 | (5 ≤ t1 < 10) ∧ (10 ≤ t1 + t2 < 15)
}

and the path π = e1e3 we want to compute the probability
Pγq◦ (CylC(γq◦ , π)) that is equal to∫
t1∈Int(γq◦ ,e1)

κγq◦+t1(e1) ·Pγ′(CylCt1 (γ
′, e3)) dµγq◦ (t1) (1)

Next, for γq◦ = 〈q◦, [x 7→ 0]〉 we have the discrete prob-
ability distribution µγq◦ over the all possible delays of γ,
Int(γq◦) = {5, 7}, defined by the probability mass function
p, where p(5) = 2

3 , and p(7) = 1
3 . We also have that

Int(γq◦ , e1) = {5} and for the resulting (after a delay)
configurations γq◦ +5 the probability of taking the edge e1 is
κγ◦+5(e1) = 1. Therefore (1) is equal to

p(5) · Pγ′(CylCt1 (γ′, e3)) (2)

and since t1 ∈ Int(γq◦ , e1) = {5} we have that

Ct1 = C5 = {t2 ∈ R≥0 | 10 ≤ t2 + 5 < 15} = [5, 10)

Next, for the resulting configuration γ′ = 〈q, x 7→ 0〉 we have
the continuous uniform probability distribution µγ′ over the

3Whenever µγ is discrete then the integration becomes summation instead.



all possible delays of γ′, Int(γ′) = [5, 10], defined by the
probability density function f(t) = 1

5 · 1[5,10](t). For the
resulting (after a delay) configurations γ′ + t he probability
of taking the edge e3 is κγ′+t(e3) = 1. Therefore for
Pγ′(CylC5(γ

′, e3)) we have

Pγ′(CylC5(γ
′, e3)) =

∫
t2∈Int(γ′,e3)

κγ′+t2(e3) · 1C5(t2)dµγ′(t2)

=

∫
t2∈[5,10]

f(t) · 1C5(t2)dt2

=

∫
t2∈[5,10]

1

5
· 1[5,10](t2) · 1[5,10)(t2)dt2

=
1

5
·
∫
t2∈[5,10)

dt2 = 1 (3)

and thus using (1), (2) and (3) we have

Pγq◦ (CylC(γq◦ , e1e3)) =
2

3
· 1 =

2

3
D. Timing Channels of Stochastic Systems

We now show how one can construct the timing channel of
an attack scenario where the system is stochastic.

For an attack scenario AS = (S,Epub, c, k) of a stochastic
system S = (TAi, (µγ)

i
γ∈Config(κγ)

i
γ∈Config)i∈I we construct

the corresponding timing channel using TABLE I. The con-
struction follows the same logic as the one for deterministic
systems, where for each input i ∈ I we need to enumerate all
the possible observations (Step 1 of TABLE I) of the adversary
and then compute its probabilities (Step 2 of TABLE I).

For deterministic systems, this process is straightforward,
since each input is associated with exactly one observation,
and consequently this observation has probability 1. However,
this is not the case for stochastic systems.

Starting with Step 1, for an input i ∈ I , the set of possible
observations Oi = {viewc(ρ) | ρ ∈ Runs(TAi)} could turn to
be infinite. To deal with this case (when needed) we assume
that the clock c of the adversary has a limit (i.e this models that
the clock has finite capacity). Now let g be the grain of c and
l = m.g (m is a natural number) its capacity. The modified
clock cl : R≥0 7→ N is given by

cl(t) = min
{
l,

⌊
t

g

⌋
· g
}

The modified clock cl now behaves as the clock c for time
points t < l, whereas for values greater or equal to l its
value becomes constant. Here notice that the algorithm from
TABLE I remains unchanged, but only the definition of the
clock changes, so we can bound the set Oi.

Next, for Step 2 we compute the probability of an ob-
servation o. First, we have that the runs which can result to
the observation o, are described by the preimage view−1c (o),
and consequently the probability of the observation o is equal
to Pγqi◦

(view−1c (o)). To show that view−1c (o) is measurable
our goal is to express it as a union of disjoint constrained
cylinders. This will also give us a more algorithmic approach
for computing the probability of o. We start by providing some
auxiliary sets and operators.

For the rest, we fix an input i ∈ I and let TA be its
corresponding timed automaton where we omit the subscript
i. Let

Paths =
⋃∞
i=k {e1...ei | | {j | ej ∈ Epub} | = k ∧

source(e1) = q◦ ∧ ei ∈ Epub}
be the set of paths that start at the initial location q◦, contain
exactly k public edges and the last edge is public. Each path
in this set represents one or more (prefixes of) runs that could
result to a k-sequence of timing observations.

Example 7. For the attack scenario of Example 5, we have
that k = 2 and Paths = {e1e3, e2e3}

Now for a sequence of observations o = (z1, ..., zk) ∈ Oi
and a path π = e1, ..., en ∈ Paths we want to specify a
constraint that describes the set of possible delays that could
result to this particular sequence of observations taking this
path. We thus define

Ce1...en(z1, ..., zk) =⋂k
i=1

{
(t1, ..., tn) ∈ Rn≥0 | {j | ej ∈ Epub} = {j1..., jk}

⇒ t1 + ...+ tji ∈ c−1(zi)
}

and notice here that c−1(z) (for z ∈ {z1, ..., zk}) is an
interval.4

Example 8. For the path π = e1e3 ∈ Paths from Example 7
and the observation o = (5, 10) ∈ O we have the constraint

Cπ(o) =
{
(t1, t2) ∈ R2

≥0 | t1 ∈ c−1(5)
}
∩{

(t1, t2) ∈ R2
≥0 | t1 + t2 ∈ c−1(10)

}
and since c−1(5) = [5, 10) and c−1(10) = [10, 15) we have
that

Cπ(o) =
{
(t1, t2) ∈ R2

≥0 | (5 ≤ t1 < 10)∧
(10 ≤ t1 + t2 < 15)}

Finally, this allows us to express view−1c (o) as a union of
disjoint constrained cylinders as

view−1c (o) =
⋃

π∈Paths

CylCπ(o)(γq◦ , π)

and thus the probability of the observation o ∈ Oi is

Pγq◦ (view
−1
c (o)) =

∑
π∈Paths

Pγq◦ (CylCπ(o)(γq◦ , π))

The next example illustrates the construction of a timing
channel for the case of the system being stochastic.

Example 9. We will now compute the timing channel of the
attack scenario from Example 5.

The set of possible observations of the adversary is O =
{(5, 10), (5, 15)} = Oi1 = Oi2 and from Example 7, we have
that Paths={e1e3, e2e3}.

Next, let π1 = e1e3, and π2 = e2e3. For the input i1 and
the observation o = (5, 10) we have that

4The same holds whenever we have a clock cl with limit l.



view−1c ((5, 10)) = CylCπ1 (5,10)(γq
i1
◦
, π1)∪

CylCπ2 (5,10)(γq
i1
◦
, π2)

and thus
Pγ

q
i1
◦
(view−1c ((5, 10))) = Pγ

q
i1
◦
(CylCπ1 (5,10)(γq

i1
◦
, π1))+

Pγ
q
i1
◦
(CylCπ2 (5,10)(γq

i1
◦
, π2))

Note that in Example 6, we calculated the probability
Pγ

q
i1
◦
(CylCπ1 (5,10)(γq

i1
◦
, π1)) = 2

3 and working similarly we

can show that Pγ
q
i1
◦
(CylCπ2 (5,10)(γq

i1
◦
, π2)) =

1
5 and therefore

we get that

Pγ
q
i1
◦
(view−1c ((5, 10))) =

2

3
+

1

5
=

13

15

We work similarly for the observation o = (5, 15) and we get

Pγ
q
i1
◦
(view−1c ((5, 15))) = Pγ

q
i1
◦
(CylCπ1 (5,15)(γq

i1
◦
, π1))+

Pγ
q
i1
◦
(CylCπ2 (5,15)(γq

i1
◦
, π2))

= 0 +
2

15
=

2

15

We repeat the process for the input i2, and we obtain the
following timing channel

TC(AS)(i, o) =



13

15
if i = i1 and o = (5, 10)

2

15
if i = i1 and o = (5, 15)

8

10
if i = i2 and o = (5, 10)

2

10
otherwise

V. ANALYSIS OF TIMING CHANNELS IN DETERMINISTIC
SYSTEMS

In this section, we start by analyzing the relationship be-
tween clock grain and leakage for deterministic systems. Next,
we present timing techniques that have been used to bypass
a low-resolution clock, we present a new timing technique,
and we show how those techniques can be modelled in our
framework. We finish by showing a result on the hierarchy of
those techniques in terms of how much information can be
extracted from the adversary.

A. Relating Clock Grain and Leakage

In our first result, we show that, contrary to popular belief
a coarse-grained clock might leak more information than a
fine-grained clock.

Proposition 1. There exists deterministic system S and attack
scenarios AS1, AS2 of S with clocks c1, c2 resp., and grains
g1, g2 with g1 < g2 and TC(AS1) � TC(AS2).

Note that Proposition 1 does not talk about the well-known
bypassing techniques [2], [13]–[15] that have been used to
side-step the defense of a coarse-grained clock; instead it
shows that the security offered by a coarse-grained clock could

be worse than the one offered by a fine-grained clock, even
when bypassing techniques are not in use.

Proposition 1 follows from the following example

Example 10. Consider a deterministic system S, whose input
set is I = {i1, i2} and the system is given by two automata
TAi1 and TAi2 who both have a single edge leaving their initial
location e1 = (q◦, x = 2, q) (for TAi1 ), and e2 = (q′◦, x =
3, q′) (for TAi2 ) controlled by a dense clock x.

For TAi1 we have the run ρ1 = γq◦
2,e1−→ γ1... and

for TAi2 we have the run ρ2 = γq′◦
3,e2−→ γ′1.... Next

consider the two attack scenarios AS1 = (S, {e1, e2} , c1, 1)
and AS2 = (S, {e1, e2} , c2, 1) where the edges of interest
are observable, the clock c1 has grain g1 = 2, the clock
c2 has grain g2 = 3, and the adversary makes one timing
observation. Following the algorithm from TABLE I, for
AS1 we have Oi1 = {viewc1(ρ1)} = {c1(2)} = {2}
and Oi2 = {viewc1(ρ2)} = {c1(3)} = {2}, whereas for
AS2 we have Oi1 = {viewc2(ρ1)} = {c2(2)} = {0} and
Oi2 = {viewc2(ρ2)} = {c2(3)} = {3} and thus we get the
timing channels

TC(AS1)(i, o) = 1 TC(AS2)(i, o) =



1 if i = i1

and o = 0

1 if i = i2

and o = 3

0 otherwise

We then have that ≡TC(AS1)= >, whereas ≡TC(AS2)= ⊥, and
thus TC(AS1) v TC(AS2). Next using Theorem 1 we get that
TC(AS1) � TC(AS2) showing that the attack scenario where
the clock has grain g2 = 3 leaks more than the scenario where
the clock has grain g1 = 2.

Although, we showed that, in general, increasing the grain
of the clock does not increase security, with our next theorem
we provide sufficient coditions for when this actually happens.

Theorem 3. (Multiple-g security.) Let AS1 = (S,Epub, c1, k)
and AS2 = (S,Epub, c2, k) be two attack scenarios such that S
is deterministic and the clocks c1, c2 have grains g1, g2 (resp.)
and g1 is a multiple of g2. We then have that

TC(AS1) � TC(AS2)

In particular, Theorem 3 shows that whenever the system
is deterministic and we increase the grain of the clock to a
multiple of it, the new low-resolution clock gives better (or at
least the same) security. Theorem 3 is proved using Fact 1,
and Theorem 1 (Appendix C).

B. Timing Techniques
Several timing techniques have successfully side-stepped

the defence provided by a coarse-grained clock, by building
their own fine-grained clocks from primitives such as coarse-
grained clocks and simple counter processes [2], [13], [14]. We
now explain how techniques such as the one-pad and the clock-
edge [13], [14] work, and we present a new timing technique
called the co-prime.



tslow tslow + tpad

tfast tfast + tpad

time

(a) The one-pad technique.

Learning phase:tpad =
g
4

Attack phase:tf = c(tf ) + g − 3 · tpad

tfc(tf ) tf + 3 · tpad

4 · tpad

g

g

time

(b) An example of the clock-edge technique. The learning phase on
top and the attack phase bottom.

Fig. 4: Padding timing techniques.

We study those techniques in a setting as in [13], [14], where
the adversary tries to measure the timing of a function f that
is sent to the victim in a piece of malicious code where he
performs his timing technique.

1) The One-Pad Technique: In many cases the adversary
wants only to distinguish between two different executions
of f , tslow and tfast, where tfast is smaller than tslow. Using the
one-pad technique the adversary exploits the fact that the time
between two clock-edges is constant and equal to g. He then
chooses to perform a constant time operation called padding.

If now tpad is the time of the padding operation, the padding
is chosen in such a way such that the short duration tslow plus
the duration of the padding tpad always crosses the next clock-
edge i.e tslow+tpad ≥ c(tslow)+g, while tfast+tpad < c(tfast)+g.

After the end of the padding operation, if the value of the
adversary’s clock is above the next clock-edge, he infers that
the slow event has happened, otherwise it is the case of the fast
event. Fig. 4 (a) depicts a scenario of the one-pad technique.

2) The Clock-Edge Technique: The one-pad technique is
good enough for distinguishing between two different ex-
ecution times, however, sometimes an adversary requires a
mechanism that gives more precise measurements. For those
cases, the clock-edge technique can be used. The fact that a
clock c with grain g is being increased with a constant rate i.e
every g, gives the attacker the ability to express the duration
of a sequence of his operations as a portion to g. In particular,
similarly to the one-pad technique the adversary here adds a
padding for one or more times.

The technique begins with a learning phase (Fig. 4 (b) top),
where the adversary performs his padding operation between
two consecutive clock-edges. Assuming that a number of m
operations have occurred between the two edges, and using
that the duration of m padding operations is equal to g, the
attacker derives that the duration of his padding operation is
tpad = g

m .
The attack phase (Fig. 4 (b) bottom) of the technique then

begins with the adversary aligning the operation f that he
wants to measure to a clock-edge and right after the execution
of f completes, he inspects the value of his clock c(tf ).
Immediately after, he starts performing his padding operator
until he observes the next clock-edge. If at this point he
observes n paddings the duration tf of f can be approximated

TABLE II: Algorithm for constructing padding timing tech-
niques.

TA(tf , tpad,m) = let q◦, q1, ..., qm+1 be fresh nodes
and x a fresh dense clock
Q = {q◦, q1, ..., qm+1}
E =

{
(q◦, x = tf → x, q1),

(q1, x = tpad → x, q2), ...,

(qm, x = tpad → x, qm+1)
}

I = [q◦ 7→ tt][q1 7→ tt]...[qm+1 7→ tt]

in (Q, q◦,E, I)

by the number c(tf ) + g − n · tpad ≈ tf .5

3) The Co-Prime Technique: Looking at the one-pad and
the clock-edge technique one could think of the following
questions: Do we always need a padding operation with
duration less than g in order to perform fine-grained measure-
ments? What happens if we do not stop at the next clock-edge
and we continue performing the padding operator for a couple
of more times?

For the co-prime technique, the adversary may not neces-
sarily use a padding with timing less than the grain of the
clock, and he may also not stop at the next clock-edge. In
particular, in the co-prime technique, the adversary performs
a padding operation for g (the grain of the clock) times, and
the timing of his padding tpad is co-prime with g. Why this
technique works becomes clear in the next two subsections.

C. Modelling Timing Techniques

We use the algorithm in TABLE II to model the essential
aspects of the timing techniques: one-pad, clock-edge and co-
prime.

Recall that we assume an adversary who tries to measure the
timing of a deterministic function f that is sent to the victim
in a piece of malicious code where he performs his timing
technique. The timing of f varies depending on the internal
state of the victim. The algorithm in TABLE II takes as an
input the timing of the operation tf , the timing of the padding
tpad and the number m of padding operations the adversary
performs.

5In the clock-edge techniques presented in [13], [14] the padding operation
corresponds to the increment of a counter.



The resulting timed automaton consists of a single dense
clock x and m + 2 locations which are being constructed in
the third line. Line four constructs the edges of the automaton.
The first edge corresponds to executing the operation f and
thus we delay exactly tf time expressed by the guard x = tf .
The next m edges correspond to the execution of the padding
and similarly as for the first edge we now wait for exactly tpad
time. All the invariants are set to true.

Let now g be the granularity of the adversary’s clock c,
and tpad ∈ N be the execution time of his padding operator.
Assume also that the function f the adversary wants to
measures takes an input from the victim’s set I = {i1, .., in}
and let ti1 , ..., tin be the execution times of f on the inputs
i1, ..., in (resp.).

The attack scenario of the one-pad technique can then be
described by

AS1-pad = ((TA(ti, tpad, 1))i∈I ,E, c, 2)

where E are the edges of the system and they are observable,
and the adversary makes k = 2 observations (one before and
one after its padding operation).

Similarly for the (attack phase of the) clock-edge technique
we have

ASclock-edge = ((TA(ti, tpad,m))i∈I ,E, c,m+ 1)

where
m = min {n ∈ N | n · tpad ≥ g}

Again E are the edges of the system and they are all observ-
able. The number m of paddings is ensuring that independently
of f ’s timing, the padding will cross the next clock-edge.

Finally, if g is co-prime with tpad, the attack scenario of the
co-prime technique is

ASco-prime = ((TA(ti, tpad, g))i∈I ,E, c, g + 1)

D. A Hierarchy of Timing Techniques

We now compare the power of the timing techniques,
one-pad, clock-edge and co-prime in terms of how much
information the adversary can extract using them, and we
explain in more details why the co-prime technique works.
We start with an example that illustrates the construction
(TABLE II) of the attack scenarios of the clock-edge and the
co-prime technique and shows that the co-prime technique can
distinguish more.

Example 11. Assume that we want to distinguish between
two timing behaviours of an operation f that takes the inputs
i1 and i2 and runs for time ti1 = 8 and ti2 = 9 respectively.
Assume also that we have a clock c with grain g = 10 and a
padding with timing tpad=2.

For the clock-edge technique we need to add our padding
for

m = min {n ∈ N | n · tpad ≥ g}
= min {n ∈ N | n · 2 ≥ 10}
= 5

Using the algorithm of TABLE II we get the system S =
(TA(ti, 2, 5))i∈I and for each i ∈ I we have a timed au-
tomaton TA(ti, 2, 5) = (Q, q◦,E, I) where Q = {q◦, q1, ..., q6}
and E contains the edges e1 = (q◦, x = ti → x, q1), e2 =
(q1, x = 2 → x, q2),...,e6 = (q5, x = 2 → x, q6), and I =
λq.tt.

We then have two runs ρ1 = γ1
8,e1−→ γ2

2,e2−→ ...
2,e6−→ γ7 and

ρ2 = γ′1
9,e′1−→ γ′2

2,e′2−→ ...
2,e′6−→ γ′7 for i1 and i2 respectively.

The view of the adversary on ρ1 is

viewc(ρ1) = (c(8), c(10), c(12), c(14), c(16), c(18))
= (0, 10, 10, 10, 10, 10)

and for ρ2 we have

viewc(ρ2) = (c(9), c(11), c(13), c(15), c(17), c(19))
= (0, 10, 10, 10, 10, 10)

Therefore the runs are indistinguishable to the adversary.
Consider now the same scenario where the padding of the

adversary has duration tpad=19 which is strictly greater than
the grain g = 10 of the clock, and let g be the number of
paddings that we want to add. We will construct the attack
scenario of the co-prime technique.

Using TABLE II we get the system S = (TA(ti, 19, 10))i∈I
and for each i ∈ I we have a timed automaton
TA(ti, 19, 10) = (Q, q◦,E, I) where Q = {q◦, q1, ..., q11}
and E contains the edges e1 = (q◦, x = ti → x, q1), e2 =
(q1, x = 19 → x, q2),...,e11 = (q10, x = 19 → x, q11), and
I = λq.tt.

We then have two runs ρ1 = γ1
8,e1−→ γ2

19,e2−→ ...
19,e11−→

γ12 and ρi2 = γ′1
9,e′1−→ γ′2

19,e′2−→ ...
19,e′11−→ γ′12 (for i1 and i2

respectively.
The view of the adversary on ρ1 is

viewc(ρ1) = (c(8), c(27), c(46), c(65), ..., c(179), c(198))
= (0,20,40,60,...,170,190)

and for ρ2 we have

viewc(ρ2) = (c(9), c(28), c(47), c(66), ..., c(180), c(199))
= (0,20,40,60...,180,190)

and thus the two runs become distinguishable at the 10th
observation, because for ρ1 the adversary observes 170 and
for ρ2 he observes 180.

To understand better why the co-prime technique works
observe that in general a timing technique is distinguishing two
timings t1, t2, when observing differences in the sequences

(c(t1), c(t1 + tpad), ..., c(t1 +m · tpad))

and
(c(t2), c(t2 + tpad), ..., c(t2 +m · tpad))

The question therefore is how to choose the appropriate
number m of paddings for making the two sequences dis-
tinguishable.
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However, Fact 2 shows that the two sequences are indistin-
guishable if and only if

(c(t1), c(t1 + (tpad mod g)), ..., c(t1 + (m · tpad mod g)))

and

(c(t2), c(t2 + (tpad mod g)), ..., c(t2 + (m · tpad mod g)))

are different.
The co-prime technique exploits this fact and rephrases the

question of the padding techniques to: (1) what padding is
needed, and (2) how many times I need to add it so by the
end of the timing technique the padding times generate the
entire Zg set (answer: (1) tpad needs to be co-prime with g,
and (2) it needs to be added g times).

We finish by showing that the timing-techniques of the one-
pad, clock-edge and the co-prime form a strict hierarcy in
terms of the amount of information the adversary can extract.
In particular, we show that the co-prime techinique achieves
the most information leakage among the other techniques,
whereas the one-pad achieves the least leakage.

Theorem 4. Let f be a function that runs on the input set
I and its timing behaviour is described by the family (ti)i∈I .
Let also c be a clock with grain g, a padding with time tpad,
and AS1-pad, and ASclock-edge the corresponding attack scenarios
of the one-pad and the clock-edge techniques. Consider also
another padding with duration t′pad that is co-prime with g, and
let ASco-prime be the corresponding co-prime attack scenario.
We then have that

TC(AS1-pad) � TC(ASclock-edge) � TC(ASco-prime)

Theorem 4 is proved using Fact 2, and Theorem 1 (Ap-
pendix D).

VI. ANALYSIS OF TIMING CHANNELS IN STOCHASTIC
SYSTEMS: A CASE STUDY

In this section, we analyse timing channels of stochastic
systems. In particular, we perform a case study, which consists
of two parts. The first part is the modelling of our case study
as a system of timed automata. In the second part, we consider
different adversaries (with respect to their clock), we compute
their timing channels, and we derive our insights about the
relation between clock grain and leakage in stochastic systems.

A. Modelling the Case Study

We consider a scenario of a distributed system that consists
of a sensor and a controller. We are interested in modelling
the behaviour of the sensor. For details of the case study, see
Appendix E.

In particular, the sensor constantly computes some data and
communicates it to the controller. For ensuring data integrity,
the sensor always encrypts (signs) the data with his RSA
private key. The RSA encryption is implemented using the
modular exponentiation algorithm which computes xk mod n
for the secret key k, some data x and the constant modulus n.
The implementation is given by the following piece of code

m := (1 ∗ 1) mod n;
for (j = 0; j < len(k); j++) {

m := (m ∗m) mod n;
if (k[j] == 1) then
m := (m ∗ x) mod n;

}

where the secret bits of the key are stored in the array k[].
Due to the conditional execution of the modular multiplication
operation m = m ∗ x mod n the running time of this program
reveals information about the entries of k.



To decrease the correlation between the encryption time
and the secret bits of the key, the sensor adds noise to the
encryption time by delaying for some additional period after
each encryption, and then it communicates the data to the
controller.

In our model, we assume that the sensor performs each
modular multiplication in 1 time unit. We also assume that
the size of the secret key k is 1024-bits, and thus the timed
needed for one encryption is

tenc(k) = 1025 + Ham(k)

where Ham(k) is the Hamming weight of k (i.e the number
of non-zero bits).

For the noise added by the sensor, we assume that the sensor
chooses randomly to wait for t ∈ {1, 2, ..., 10}, with respect
to a uniform distribution.

We model the timing behaviour of the sensor as a stochastic
timed system with input space the 21024 keys and for each key,
we have a stochastic timed automaton as depicted in Fig. 5
(a).

The automaton consists of three locations and one dense
clock x that is used to control the transitions between them.
Starting at the initial location q◦, the automaton performs an
encryption with respect to a Dirac’s distribution on the time
point tenc(k), modeling in that way that an encryption takes
exactly tenc(k) time units. Next, it moves to location q, where
we have 10 different edges leaving q, one for each possible
delay, modelling the additional noise added by the sensor. A
delay is chosen uniformly and the automaton moves to location
q′. At location q′ the automaton communicates the message
to the controller with respect to an exponential distribution of
parameter λ = 6 time units.

Finally, on the side of the controller, we assume an ad-
versary who runs malicious code that uses the clock of the
controller and measures the time needed for the sensor to send
its data, trying to infer bits of the sensor’s private key.

B. Analysing the Leakage in the Case Study

Using TABLE I, we constructed the timing channel for 1000
different attack scenarios (for different clocks), where we have
as observable edges the ones that model the communication of
the message. We assumed an adversary that performs one tim-
ing observation and uses a clock with grain g = 1, 2, ..., 1000
and with some limit l > 15000. The details of the construction
can be found in the Appendix E.

We then computed the min-capacity for each one of those
channels. The graph in Fig. 5 (b) shows the effect of increasing
the grain of the clock on the information leaked by the channel.
The maximum leakage is around 6.7-bits for grain g = 1,
whereas we have 1-bit leakage for the attack scenarios where
the grain is above 678. We can also see from the graph that
increasing the grain of the clock does not always give us
less information leakage. In particular, for g = 514, we have
around 1.43-bits leaked, whereas for g = 520 we have around
1.58-bits, which leads to the following proposition

Proposition 2. There exists stochastic system S and attack
scenarios AS1, AS2 of S with clocks c1, c2 resp., and grains
g1, g2 with g1 < g2, and Cmin(TC(AS1)) < Cmin(TC(AS2)).

Proposition 2 shows also for the case of stochastic systems
that the security offered by a coarse-grained clock could be
worse than the one offered by a fine-grained clock, even when
bypassing timing techniques are not used.

Finally, our experiment shows that increasing the grain of
the clock to a multiple of it results to a channel with less (or
equal) leakage, however a proof that this holds for general
stochastic systems (i.e Theorem 3 generalizes to stochastic
systems) is still elusive.

VII. RELATED WORK

There is an extensive work on formally quantifying and
providing bounds on the leakage of timing-channels for
cryptographic implementations [9], [10], [22], [23], remote
network adversaries [11], [24] and language-based settings
[25]–[27]. The main novelty of our approach compared to
those is the modelling of coarse-grained clock adversaries,
and the novel algorithms that we give for constructing timing
channels for systems of timed automata.

Clocks of certain granularity and their defence power have
been studied a lot in practice using empirical ways. Schwarz et
al. [14] provided a wide range of techniques that can be used
to build fine-grained clocks in Javascript, including similar
techniques to the one-pad and the clock-edge. Wei-Ming
Hu [28], [29] proposed the concept of fuzzy time. Instead
of increasing the grain of the clock, fuzzy time modifies
its functionality by randomly changing its grain within a
certain period. Vattikonda et al. [30] proposed fuzzy time for
mitigating timing channels in hypervisors, and also evaluated
the impact of this countermeasure on the usability of the
system. Fuzzy time has also been proposed and implemented
in Firefox by Kohlbrenner et al. [13] for defeating timing
channels in browsers. They also showed that this mitigation is
effective against timing techniques such as the clock-edge.

Mantel et al. [12] proposed an information-theoretic frame-
work for comparing the effectiveness of different countermea-
sures on the bandwidth of interrupt-related channels, that is a
special case of timing channels. In their analysis, they include
the countermeasure of coarse-grained clocks and fuzzy time.
For coarse-grained clocks, they perform a case-study where
they show how increasing the grain of the clock reduces the
capacity of the channel. Our approach is more general, while
we also showed that increasing the grain of a clock might
result to more leakage, and we provided formal proofs for
when this is not the case.

VIII. CONCLUSIONS

We performed the first principled information-flow analysis
of timing leaks w.r.t. adversaries with clocks of reduced reso-
lution, where we derived novel insights into the effectiveness
of existing attacks and countermeasures.

In particular, we introduced a model of timed automata
systems which is general enough to cater for scenarios where



the victim’s timing behaviour is stochastic or deterministic,
and a model of adversary that is parametric on the clock’s
granularity and the number of timing observations.

We provided novel algorithms for transforming such a
model into an information-theoretic channel, allowing us to
measure the leakage conveyed by it using existing techniques
from quantitative information-flow.

Based on that, we showed that a coarse-grained clock
might leak more than a fine-grained clock, and we provided
sufficient conditions for when one can achieve better security
by increasing the grain of the clock. For the techniques that
have bypassed this countermeasure, we showed that they form
a strict hierarchy in terms of the information an adversary can
extract using them, and we introduced a new timing technique.

As future work, we are interested in extending our model so
it can encompass for clocks with fuzzy time as in [12], [13],
[28], [29]. As another direction, we want to approximate the
security offered by a coarse-grained clock using techniques
from statistical model checking and automate our analysis
using the model-checker for (stochastic) timed automata UP-
PAAL [31]. This approach is particularly interesting since it
can allow for estimating the trade-off between security and
safety properties of a system.
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APPENDIX
PROOFS AND CALCULATIONS

A. Proof of Fact 1

Proof: A clock c with grain g, defines an equivalence
relation on R≥0 by for t1, t2 ∈ R≥0 we have that

t1 ≡g t2 iff c(t1) = c(t2)

and observe that the equivalence classes of ≡g are then
described by the intervals [0, g), [g, 2g), [2g, 3g).....

Now for two clocks c1 and c2 with grains g1 and g2 (resp.)
where g2 = n · g1 (for n being a positive integer) we have
that ≡g1 refines every equivalence class of ≡g2 in exactly n
equivalence classes (e.g for the first equivalence class [0, g2)
of ≡g2 we have the n equivalence classes [0, g1), ..., [(n− 1) ·
g1, n · g1) of ≡g1 ). Therefore for t1, t2 ∈ R≥0 we have that

t1 ≡g1 t2 ⇒ t1 ≡g2 t2

which give us that

c1(t1) = c1(t2)⇒ c2(t1) = c2(t2)

as required.

B. Proof of Fact 2

Proof: Since n ∈ N is a natural number we have that
n = m ·g+(n mod g) for some integer m. We then have that
c(t1 + n) = c(t2 + n) iff

⌊
t1+n
g

⌋
· g =

⌊
t2+n
g

⌋
· g

⇔
⌊
t1+m·g+(n mod g)

g

⌋
· g =

⌊
t2+m·g+(n mod g)

g

⌋
· g

⇔
⌊
t1+(n mod g)

g +m
⌋
· g =

⌊
t2+(n mod g)

g +m
⌋
· g

⇔ (
⌊
t1+(n mod g)

g

⌋
+m) · g = (

⌊
t2+(n mod g)

g

⌋
+m) · g

⇔
⌊
t1+(n mod g)

g

⌋
· g + g ·m =⌊

t2+(n mod g)
g

⌋
· g + g ·m

⇔
⌊
t1+(n mod g)

g

⌋
· g =

⌊
t2+(n mod g)

g

⌋
· g

⇔ c(t1 + (n mod g))=c(t2 + (n mod g))

and thus we have proved the required result.

C. Proof of Theorem 3

Proof. Let AS1 = (S,Epub, c1, k) and AS2 = (S,Epub, c2, k)
be two attack scenarios such that S is deterministic and the
clocks c1, c2 have grains g1, g2 (resp.), and g1 is a multiple
of g2. We will prove that

TC(AS1) � TC(AS2)

Since S is deterministic then also TC(AS1) and TC(AS2) are,
and thus by Theorem 1 in order to prove that TC(AS1) �
TC(AS2) it is sufficient to show that TC(AS1) v TC(AS2).

Let i1, i2 ∈ I , with i1 ≡TC(AS2) i2. Let also ρ1, ρ2 ∈
Runs(S) be their corresponding runs, and t′1,...,t′k and t′′1 ,...,t′′k
be the k-time sequence of ρ1 and ρ2 resp. Since, i1 ≡TC(AS2)

i2 we have that the view of the adversary on the runs of them
is the same, that is

viewc2(ρ1) = (c2(t
′
1), c2(t

′
2), ..., c2(t

′
k))

= viewc2(ρ2)
= (c2(t

′′
1), c2(t

′′
2), ..., c2(t

′′
k)) (1)

Next, using that the grain g1 of the clock c1, is a multiple of
the grain g2, of the clock c2, Fact 1 and (1) we get that

viewc1(ρ1) = (c1(t
′
1), c1(t

′
2), ..., c1(t

′
k))

= viewc1(ρ2)
= (c1(t

′′
1), c1(t

′′
2), ..., c1(t

′′
k))

and this give us that i1 ≡TC(AS1) i2 and thus we showed that
TC(AS1) v TC(AS2) as required.

D. Proof of Theorem 4

Proof: Let S1-pad, Sclock-edge and Sco-prime be the determin-
istic systems that correspond to the three scenarios AS1-pad,
ASclock-edge and ASco-prime (resp.) Since S1-pad, Sclock-edge,
Sco-prime are deterministic, we also have that TC(AS1-pad) :
I × O1 7→ [0, 1], TC(ASclock-edge) : I × O2 7→ [0, 1] and
TC(ASco-prime) : I ×O3 7→ [0, 1] are deterministic. Therefore,
using Theorem 1, in order to prove that

TC(AS1-pad) � TC(ASclock-edge) � TC(ASco-prime)

it is sufficient to show that

TC(AS1-pad) v TC(ASclock-edge) v TC(ASco-prime)



that is that the partition of TC(AS1-pad) is refined by the one of
TC(ASclock-edge), and the partition of TC(ASclock-edge) is refined
by the one of TC(ASco-prime).

We will start by showing that

TC(ASclock-edge) v TC(ASco-prime)

Let i1, i2 ∈ I , with their timings ti1 , ti2 , such that

i1 ≡TC(ASco-prime) i2

which means that there exists o ∈ O3 such that

TC(ASco-prime)(i1, o) = 1 = TC(ASco-prime)(i2, o) (1)

Next, let ρi1 and ρi2 to be the runs of the automata of
the system Sco-prime which correspond to i1 and i2 (resp.).
Expanding (1) we have that

viewc(ρi1) = (c(ti1), c(ti1 + t′pad), ..., c(ti1 + g · t′pad))

= o
= viewc(ρi2)
= (c(ti2), c(ti2 + t′pad), ..., c(ti2 + g · t′pad)) (2)

Now since t′pad is co-prime with g, t′pad is a generator of the
group (Zg,+) and thus

Zg = {0, 1, .., g − 1}
=
{
0 mod g, t′pad mod g, ..., (g − 1) · t′pad mod g

}
(3)

Therefore using (3) and (2) we have that

∀z ∈ Zg : c(ti1 + z) = c(ti2 + z) (4)

Now using (4) we will show that i1 ≡TC(ASclock-edge) i2. Let ρ′i1
and ρ′i2 to be the runs of the automata of the system Sclock-edge
that correspond to i1 and i2 (resp.). We then have that

viewc(ρ
′
i1
) = (c(ti1), c(ti1 + tpad), ..., c(ti1 +m · tpad))

and

viewc(ρ
′
i1
) = (c(ti2), c(ti2 + tpad), ..., c(ti2 +m · tpad))

where m is the number of paddings needed for the clock-edge
technique. Using Fact 2, we have that for proving viewc(ρ

′
i1
) =

viewc(ρ
′
i1
) it is sufficient to show that

∀z ∈ {0 mod g, tpad mod g, ..., (m · tpad) mod g} :
c(ti1 + z) = c(ti2 + z) (6)

However, since

{0 mod g, tpad mod g, ..., (m · tpad) mod g} ⊆ Zg
and by (4), we have that (6) holds and we have proved that

TC(ASclock-edge) v TC(ASco-prime)

Finally, we will show that TC(AS1-pad) v TC(ASclock-edge).
Let i1, i2 ∈ I , with times ti1 and ti2 (resp.), such that
i1 ≡TC(AS2) i2, which means that there exists o ∈ O2 such that
TC(ASclock-edge)(i1, o) = 1 = TC(ASclock-edge)(i2, o). Next let
ρi1 , ρi2 to be the runs of the automata of the system Sclock-edge
that correspond to i1 and i2 (resp.), and ρ′i1 , ρ′i2 to be the runs
of the automata of the system S1-pad that correspond to i1 and
i2 (resp.). By our assumptions we have that

viewc(ρi1) = (c(ti1), c(ti1 + tpad), ..., c(ti1 +m · tpad))
= o
= viewc(ρi2)
= (c(ti2), c(ti2 + tpad), ..., c(ti2 +m · tpad))

for m being the padding needed for the clock-edge technique,
and thus we also have that

viewc(ρ
′
i1
) = (c(ti1), c(ti1 + tpad))

= (c(ti2), c(ti2 + tpad))
= viewc(ρ

′
i2
)

which give us that i1 ≡TC(AS1-pad) i2.
Therefore we can conclude that

TC(AS1-pad) v TC(ASclock-edge)

and this completes the proof.

E. Details of the Case Study

We show Step 1, and Step 2 of the algorithm in TABLE I
for an arbitrary key k, a clock cl with g ∈ [1, 1000] and limit
l > 15000.

Let e1 = (q◦, x = tenc(k), q) be the edge that corresponds to
the encryption, e2 = (q, x = 1, q′),...,e11 = (q, x = 10, q′) the
edges that correspond to the noise, and e12 = (q′, → x, q◦)
to be the edge of the communication.

For the initial configuration γq◦ we have the Dirac’s distri-
bution µγq◦ , where for a Borel set A we have

µγq◦ (A) = δtenc(k)(A) =

{
1 if tenc(k) ∈ A
0 otherwise

For a configuration γq of the location q, we have a discrete
uniform probability µγq over the set 1, ..., 10 given by the
probability mass function

p(t) =
1

10
· 1{1,...,10}(t)

Finally, for the configuration γq′ of the location q′ we have
an exponential distribution µγq′ given by the density function

f(t) = 6 · exp(−6 · t) · 1[0,+∞)(t)

Next, for any t1 ∈ Int(γ◦) =
{
tenc(k)

}
, t2 ∈ Int(γq, ) =

{1, ..., 10}, and t3 ∈ Int(γq′) = [0,+∞) we have
κγq◦+t1(e1) = 1, κγq+t2(e) = 1 (if t2 = z and e = ez+1)
and κγq′+t3(e12) = 1 respectively.

Step 1, the possible observations of the adversary for input
k, is given by the set

Ok =
{
c(tenc(k) + 1), c(tenc(k) + 1) + g, ..., l

}
Next we need to compute the probabilities of those outputs

(Step 2). We start by computing the 1-observable (i.e k = 1)
paths of the automaton and we get

Paths = {e1e2e12, e1e3e12, ..., e1e11e12}

Therefore for an observation o ∈ Ok we have that

viewcl(o) =
⋃

π∈Paths

CylCπ(o)(γq◦ , π)



and thus

Pγq◦ (view
−1
cl

(o)) =
∑

π∈Paths

Pγq◦ (CylCπ(o)(γq◦ , π))

For an observation o ∈ Ok, and a path π ∈ Paths we will
show how we compute the probability

Pγq◦ (CylCπ(o)(γq◦ , π))

We distinguish the following cases o < l and o = l.
Case (a). For o < l, and π = e1eze12 ∈ Paths where

z ∈ {2, ..., 11} we have that

Cπ(o) =
{
(t1, t2, t3) ∈ R3

≥0 | o ≤ t1 + t2 + t3 < o+ g
}

and
Pγq◦ (CylCπ(o)(γq◦ , π))

is equal to∫
t1∈Int(γq◦ ,e1)

κγq◦+t1(e1) · Pγq (CylCt1π (o)
(γq, π(1)))dµγq◦ (t1)

where π(1) = eze12. Since we integrate with respect to a
Dirac’s distribution over tenc(k), we have that the previous
integral is equal to

Pγq (CylC
tenc(k)
π (o)

(γq, π(1))) (1)

Next let Ctenc(k)π (o) = C1 and then (1) is equal to∫
t2∈Int(γq,ez)

κγq+t(ez) · Pγq′ (CylCt21 (γq′ , e12))dµγq (t2)

= p(z − 1) · Pγq′ (CylCz−1
1

(γq′ , e12))

=
1

10
· Pγq′ (CylCz−1

1
(γq′ , e12))

=
1

10
·
∫
t∈Int(γq′ ,e12)

κγq′+t(e12) · 1Cz−1
1

(t)dµγq′ (t)

=
1

10
·
∫
t∈[0,+∞)

6 · exp(−6 · t) · 1[0,+∞)(t) · 1Cz−1
1

(t)dt (2)

We next distinguish between three subcases based on the
constraint

Cz−11 = [o− (tenc(k) + z − 1), o+ g − (tenc(k) + z − 1))

First, let
L = o− (tenc(k) + z − 1)

and
U = o+ g − (tenc(k) + z − 1)

Now if L < 0, and U > 0, (2) is
1

10
·
∫
t∈[0,U)

6 · exp(−6 · t)dt

=
1

10
· (−exp(−6 · U) + 1)

Next, if L ≥ 0, and U > 0, (2) is
1

10
·
∫
t∈[L,U)

6 · exp(−6 · t)dt

=
1

10
· (−exp(−6 · U) + exp(−6 · L))

Otherwise, when U ≤ 0 (2) is equal to 0.
Case (b). For o = l, and π = e1eze12 ∈ Paths where

z ∈ {2, ..., 11} we have that

Cπ(l) =
{
(t1, t2, t3) ∈ R3

≥0 | t1 + t2 + t3 ≥ l
}

and
Pγq◦ (CylCπ(l)(γq◦ , π))

is equal to∫
t1∈Int(γq◦ ,e1)

κγq◦+t1(e1) · Pγq (CylCt1π (l)
(γq, π(1)))dµγq◦ (t1)

where π(1) = eze12. Since we integrate with respect to a
Dirac’s distribution over tenc(k), we have that the previous
integral is equal to

Pγq (CylC
tenc(k)
π (l)

(γq, π(1))) (1)

Next, let Ctenc(k)π (l) = C1 and then (1) is equal to∫
t2∈Int(γq,ez)

κγq+t(ez) · Pγq′ (CylCt21 (γq′ , e12))dµγq (t2)

= p(z − 1) · Pγq′ (CylCz−1
1

(γq′ , e12))

=
1

10
· Pγq′ (CylCz−1

1
(γq′ , e12))

=
1

10
·
∫
t∈Int(γq′ ,e12)

κγq′+t(e12) · 1Cz−1
1

(t)dµγq′ (t)

=
1

10
·
∫
t∈[0,+∞)

6 · exp(−6 · t) · 1[0,+∞)(t) · 1Cz−1
1

(t)dt (2)

Next, we distinguish between two subcases based on the
constraint

Cz−11 = [l − (tenc(k) + z − 1),+∞)

First, let
L = l − (tenc(k) + z − 1)

Now if L < 0, (2) is
1

10
·
∫
t∈[0,+∞)

6 · exp(−6 · t)dt

=
1

10

Otherwise, if L ≥ 0, (2) is
1

10
·
∫
t∈[L,+∞)

6 · exp(−6 · t)dt

=
1

10
· lim
n→∞

[−exp(−6 · t)]nL

=
1

10
· lim
n→∞

−exp(−6 · n) + exp(−6 · L)

=
1

10
· exp(−6 · L)


