
On Aggregation of Information in Timing Attacks
Itsaka Rakotonirina

INRIA Nancy Grand-Est, LORIA
itsaka.rakotonirina@inria.fr

Boris Köpf
Microsoft Research

boris.koepf@microsoft.com

Abstract—A key question for characterising a system’s vul-
nerability against timing attacks is whether or not it allows an
adversary to aggregate information about a secret over multiple
timing measurements. Existing approaches for reasoning about
this aggregate information rely on strong assumptions about the
capabilities of the adversary in terms of measurement and com-
putation, which is why they fall short in modelling, explaining,
or synthesising real-world attacks against cryptosystems such as
RSA or AES.

In this paper we present a novel model for reasoning about
information aggregation in timing attacks. The model is based
on a novel abstraction of timing measurements that better
captures the capabilities of real-world adversaries, and a notion
of compositionality of programs that explains attacks by divide-
and-conquer. Our model thus lifts important limiting assumptions
made in prior work and enables us to give the first uniform
explanation of high-profile timing attacks in the language of
information-flow analysis.

Index Terms—side-channels, timing attacks, information flow,
compositionality

I. INTRODUCTION

Side-channel attacks break the security of systems by
exploiting physical characteristics such as power consump-
tion [1], electromagnetic emissions [2], [3], or execution
time [4], [5]. Among those characteristics, execution time
poses a particular threat to open, distributed systems such
as the Internet because it can be measured and exploited
remotely [6].

Security against timing attacks is often expressed in terms of
noninterference, which is the requirement that the execution
time of a program must not depend on secret inputs. How-
ever, while noninterferent timing behaviour implies resilience
against timing attacks, the converse is not always true: a
violation of noninterference needs not give rise to an attack
that effectively recovers the secret from timing measurements.
For secrets with few alternatives (such as a single bit), recovery
may require only a single timing measurement. However, for
secrets with many alternatives (such as cryptographic keys), re-
covery usually requires aggregating timing information across
multiple executions. Hence, the key question for characterising
a program’s vulnerability against timing attacks is whether or
not it allows an adversary to perform such an aggregation.

A number of approaches have been proposed for expressing
and computing this aggregate information for real programs.
Some focus on deriving sound bounds on what an attacker
can in principle achieve [7]–[10], others focus on generating

actual attacks [11]–[13]. Despite their technical differences,
those approaches rely on two common assumptions, namely:

1) that the adversary has access to accurate models of
the target system’s timing behaviour. These models can
be deterministic or probabilistic and be obtained from
specifications or profiling.

2) that the adversary has unbounded computational re-
sources. In particular, they rely on computations of preim-
ages or the enumeration of all paths of a program, both
of which are computationally intractable operations for
cryptographic code with realistic key lengths.

Assertions about the aggregate information based on these
assumptions are sound, in the sense that they over-estimate
what a real-world adversary can achieve. However, they fall
short in modelling, explaining, or synthesising real-world
attacks against vulnerable implementations of cryptosystems
such as RSA and AES [4], [5], [14]–[16], which recover
aggregate information from implementations without accurate
timing models or expensive computations.

Approach In this paper we propose a novel approach for
reasoning about information aggregation in timing attacks that
lifts the assumptions described above. Our approach is based
on three technical contributions:

1) a novel discrete abstraction of timing measurements that
captures an adversary with only an approximate model
of the target system’s timing behaviour;

2) a novel structural condition on the timing behaviour
of programs that facilitates information aggregation by
divide-and-conquer; and

3) a rigorous generic analysis of the cost of aggregation in
terms of measurement and computation.

Below we explain each of those contributions in detail.

A discrete abstraction of timings Our abstraction of timing
measurements relies on the assumption that the adversary can
only learn information about a long-term secret by comparing
the program’s execution time on different public inputs, rather
than by measuring absolute execution time. As a consequence,
the resulting notions of leakage are invariant to unknown
constant shifts of the execution time. Focusing on comparisons
captures how timing measurements are used in documented
attacks [4], [5], [14] and gives a more realistic account of the
information that can be extracted without a complete model
of execution time.

A structural condition for divide-and-conquer We iden-
tify conditions on the structure of programs that enable
an adversary to aggregate secret information by divide-and-
conquer. Essentially, the conditions require that the program
is sequentially composed of a number of sub-programs that
are independent, in the sense that there are adversary inputs
that trigger secret-dependent execution time of each specific
sub-program while keeping constant the execution time of the
remaining code.

We formalise two versions of independence:

• A possibilistic one that explains the core idea behind
information aggregation in timing attacks using discrete
mathematics and forms a promising basis for automatic
crafting of adversary inputs, i.e. generation of attacks.

• A probabilistic one that is inspired by real-world attacks
against RSA [5] and allows to replace (potentially expen-
sive) crafting of attacker inputs by random sampling.

Cost of aggregation by divide-and-conquer Based on
these independence conditions, we give generic descriptions of
timing attacks, together with a rigorous analysis of their cost in
terms of the number of timing measurements and computation
steps.

• In the deterministic case we show how the cost of an
attack can go down from exponential to linear in the
number of components.

• In the probabilistic case we show how the cost can go
down to O(n ln n

ε) random samples, where n is the num-
ber of components, to recover a secret with probability
1− ε. We provide a formal proof of this bound, and we
validate it by empirical simulations.

We conclude with case studies showing how our model
encompasses high-profile attacks on RSA and AES [4], [5],
[14], for the first time exhibiting their common core.

In summary, this paper contributes a model for reason-
ing about efficient information aggregation in timing attacks,
based on a novel abstraction of timing measurements and a
novel notion of compositionality. Our model lifts important
assumptions made in previous work and enables us to give
the first uniform explanation of high-profile timing attacks in
the language of information-flow analysis.

II. MODELLING TIMING LEAKS

In this section we introduce a mathematical model of timing
leaks. It is based on an adversary that can repeatedly run a
program on different inputs and observe the corresponding
execution time. We first recall a characterisation of leaks to an
adversary that has full knowledge of the implementation and
access to perfect measurements of absolute execution time [7],
before we refine this model to one where the adversary can
only learn secret information by observing differences in time
between different executions.

A. Programs and Timing Models

Let K be a finite set of secrets, M a finite set of messages,
and O a set of observations. We characterise program imple-
mentations as pairs of functions (f, t) consisting of a function-
ality f : K×M →M and a timing model t : K×M → O. The
functionality f represents the input-output behaviour of the
program. The timing model t captures a deterministic notion of
execution time that encompasses real time (O ⊆ R+), numbers
of clock ticks, or executed instructions (O ⊆ N+).

We also often refer to oracles t∗ : M → O which are timing
models where the secret parameter has been fixed. The aim of
a timing attacker is to infer the value of the secret parameter
from queries to the oracle.

Example 1. Consider the code, where K = M = {0, 1}n are
sets of bitvectors and where xi denotes the ith bit of vector
x:

for i = 0 to n− 1 do
if ki 6= mi then g()

done

Under the assumption that each individual instruction (includ-
ing the call to g()) consumes a constant amount of time, the
program’s execution time is proportional to the number of bits
in which k and m differ, i.e., their Hamming distance. That
is, for some constant c, α ∈ O,

t(k,m) = c+ α

n−1∑
i=0

ki ⊕mi .

Example 2. Consider the same program but replace the guard
ki 6= mi by the guard ki = 1. The resulting timing model t
is independent of m and proportional to the number of 1-bits
in k, i.e. the Hamming weight of k.

Examples 1 and 2 represent patterns of timing behaviour
that are common in algorithms for bit-serial multiplication and
exponentiation, and we will use them as running examples
throughout the paper. We leave functionalities implicit for
now; they will be needed for tracking state when we compose
timing models in Section III.

B. Leaks Under Absolute Measurements

We characterise the secret information that is leaked by the
timing behaviour of a program. We begin by modeling a strong
adversary that has full knowledge of the implementation and
access to perfect measurements of absolute execution time.

Technically, we assume that k ∈ K is a long-term secret
that stays constant over multiple invocations of (f, t), and that
the adversary repeatedly runs (f, t) with different messages
m ∈ M to narrow down the potential values of k from
timing measurements. For a single query to oracle (f, t) on
m, the adversary sees o = t(k,m); this observation allows it
to conclude that

k ∈ {k′ ∈ K | t(k′,m) = o} .

This set describes all secrets that are coherent with the obser-
vation o under m: it is is the preimage of o under the function
t(·,m). In particular, two secrets k and k′ are indistinguishable
under m if they produce the same observation when queried
with m, i.e.

t(k,m) = t(k′,m) .

For every m, indistinguishability under m is an equivalence
relation 'm on K.

The equivalence classes of 'm therefore form a partition
on K which characterises the information an adversary can
deduce about a secret k upon invoking the oracle t(k, ·) on
message m. The coarsest partition > = {K} captures that
execution time reveals no secret information, whereas the
finest partition ⊥ = {{k} | k ∈ K} captures that the secret is
entirely determined by the execution time. The notations> and
⊥ may indistinctly refer to their relational counterparts, i.e. >
is the universal equivalence relation and ⊥ is the equality.
Intermediate partitions capture partial knowledge about the
secret, where finer means more knowledge.

Modelling knowledge in terms of partitions (resp. equiva-
lence relations) is common in information-flow analysis [17]
and has close connections to notions of declassification [18].

Example 3. Consider the Hamming weight from Example 2,
t(k,m) =

∑n−1
i=0 ki, with n = 2. For any message m, the

information that t leaks about the secret input is characterised
by the partition

{{00}, {01, 10}, {11}} ,

where the equivalence classes correspond to secrets of Ham-
ming weights 0, 1, and 2, respectively.

The aggregate information that an adversary can extract by
exhaustively running the program on all messages m ∈ M
can be described as the intersection of the corresponding
equivalence relations, which we denote as

Leak(t) =
⋂
m∈M

'm .

If we consider equivalence relations on a subset K ′ ⊆ K we
make this explicit by writing Leak(t,K ′).

With this, two keys k, k′ are in the same equivalence class
of Leak(t) iff they produce the same oracle. That is,

[k] = [k′] in Leak(t) iff t(k, ·) = t(k′, ·) . (1)

Here, [k] refers to the class of Leak(t) enclosing k.

Example 4. Consider t(k,m) =
∑n−1
i=0 ki⊕mi the Hamming

distance from Example 1, with n = 2. For m0 = 00 and
m1 = 01, we obtain the equivalence relations 'm0

and 'm1

defined by the equivalence classes:

'm0 : {00}, {01, 10}, {11} 'm1 : {01}, {00, 11}, {10} .

For both partitions, the blocks correspond to secrets of
Hamming distance to mi of 0, 1 and 2, respectively. Their

intersection yields ⊥, i.e. the secret is entirely determined by
aggregate timing information of queries m0 and m1. More
generally, we have Leak(t) = ⊥ for the Hamming distance
model on bitvectors of any length.

C. Leaks Under Differential Measurements

The characterisation of leaks presented in Section II-B relies
on the assumption that the timing measurement is a function
of the secret input. In most real-world attacks, however, timing
measurements capture a secret-dependent signal together with
irrelevant (and often noisy) computation. We now characterize
leaks to a weaker adversary that can learn secret information
only by comparing the execution times on different messages.
This notion of leakage is robust to unknown offsets in the
timing measurements and hence more faithfully captures the
capabilities of a real-world timing adversary.

On a technical level, we capture this adversary in terms of
a new indistinguishability relation, where k '(m,m′) k

′ if and
only if

t(k,m)− t(k,m′) = t(k′,m)− t(k′,m′) .

That is, two secrets are indistinguishable under '(m,m′) if they
show identical differences in execution times when queried
with m and m′.

With this, we define dLeak(t) characterising the information
an adversary can gain by observing the difference between
execution times for any pair of messages.

dLeak(t) =
⋂

(m,m′)∈M×M

'(m,m′)

As for Leak(t), we often write dLeak(t,K ′) when considering
equivalence only on a subset K ′ ⊆ K.

As before, we can characterise the equivalence classes of
dLeak(t) by a comparison of the corresponding oracles:

[k] = [k′] in dLeak(t) iff ||t(k, ·)− t(k′, ·)|| = 0 (2)

where ||t∗|| = max t∗−min t∗ is the amplitude of the bounded
function or vector t∗. That is, two keys k, k′ are in the
same class of dLeak(t) if they produce the same oracle up
to constant shift.

From Equations (1) and (2), we see that the information
leakage induced by observing only differences is coarser than
the leakage by absolute measurements:

Proposition 1. For all timing models t, we have the inclusion
of relations Leak(t) ⊆ dLeak(t).

Example 5. For the Hamming distance from Example 1,
we have dLeak(t) = ⊥, meaning that differential-time and
absolute-time adversaries can both learn the full secret via
timing. On the contrary, for the Hamming weight from Ex-
ample 2 we obtain dLeak(t) = >. That is, differential-time
adversaries do not learn any information via timing, whereas
absolute-time adversaries can learn the Hamming weight of
the secret.

D. Queries to Oracles

The characterisations of leaks presented so far, namely the
equivalence relations Leak(t) and dLeak(t), are based on the
aggregation of timing information over all possible (pairs of)
messages. Now we give an account of the redundancy of
the information leaked through different timing measurements.
This will form the basis of the attacks we present later, con-
sistently with the adversary’s goal of minimising the number
of measurements needed to recover the secret.

The basis of the characterisation are equivalence relations on
messages that capture the redundancy between oracle queries.
Specifically, we define m1

'

km2 if and only if t(k,m1) =
t(k,m2). Intuitively, it is sufficient to pick one representative
of each equivalence class of '

k to exercise all behaviours of
an oracle t(k, ·).

Based on this family of equivalence relations, we compile
messages in two different fashions:

• Intersection. We intersect the equivalences '

k for all
potential keys k to get a refined equivalence relation on
M .

Query(t) =
⋂
k∈K

'

k .

• Samples. We gather equivalence classes of all equivalence
relations '

k into a collection of (potentially-overlapping)
samples of messages.

Sample(t) =
⋃
k∈K

M/

'

k

If we consider only a subset of keys K ′ ⊆ K, we make this
explicit by writing Query(t,K ′) and Sample(t,K ′).

The equivalence relation Query(t) forms a basis for a
discrete approximation of t, in the sense that oracles to t are
entirely determined by their images on one representative of
each class of Query(t). In contrast, the collection of samples
Sample(t) forms a basis for a statistical approximation of
t, in the sense that oracles to t are entirely determined by
their expectations on these samples. This is formalised in the
differential-time model by the following proposition.

Proposition 2. Let [m1], . . . , [mp] be the equivalence classes
of Query(t) and Sample(t) = {M1, . . . ,Mq}. The following
points are equivalent:

(i) [k] = [k′] in dLeak(t)

(ii) ||ok − ok′ || = 0 with ok = (t(k,m1), . . . , t(k,mp))

(iii) ||ōk − ōk′ || = 0 with ōk = (µ1, . . . , µq) and

µi =
1

|Mi|
∑
m∈Mi

t(k,m)

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) easily follow from
Equation (2). (ii) ⇒ (i) is also straightforward since m and
m′ equivalent for Query(t) means t(·,m) = t(·,m′). For
(iii) ⇒ (i) we prove in Appendix A that, up to constant

shift, if two oracles t(k, ·) and t(k′, ·) coincide in expectation
on the Mis (i.e. ||ōk − ōk′ || = 0) but are not equal (i.e.
||t(k, ·)− t(k′, ·)|| 6= 0), then one can construct an infinite
sequence of distinct messages, yielding a contradiction with
the finiteness of M .

As a generalisation of Example 5, we can for example
formalise in our model that a differential-time adversary does
not learn anything by observing the timing of an implementa-
tion whose execution time cannot be influenced by choosing
different public inputs:

Proposition 3. Query(t) = > entails dLeak(t) = >.

In the next sections we show how both characterisations
can be used as a basis for compositionality results for the
differential-time model.

III. COMPOSITIONALITY IN TIMING ATTACKS

In this section we introduce a novel notion of decomposition
of programs into sub-programs that is a sufficient condition
for aggregation of timing leakage by divide-and-conquer. Our
notion is inspired by informal considerations made in timing
attacks on RSA [4], [5]. In this paper we give the first
formalisation of composition in two flavours, possibilistic and
probabilistic, together with the core property that gives rise to
efficient attacks.

A. Composition of Implementations

The sequential composition of a functionality f : K×M →
M with a function g : K ×M → E of arbitrary return type
E is defined by

(f ; g)(k,m) = g(k, f(k,m))

This is a standard function composition, except that secret
arguments are passed along unmodified. Then, consider im-
plementations (f1, t1), . . . , (fn, tn). We define

• f̄i = f1 ; f2 ; · · · ; fi, that is, the composition of function-
alities up to i

• t̄i = f̄i−1 ; ti, that is, the timing of the block i in the
context of the program execution, i.e. based on input
given by f̄i−1.

Definition 1. We say that an implementation (f, t) is com-
posed of implementations (f1, t1), . . . , (fn, tn) when f = f̄n
and t =

∑n
i=1 t̄i.

Definition 1 requires that f is the standard composition
of the functionalities fi, and that t is the sum of their
execution times. We call (fi, ti) a block of (f, t) and write
t̄−i =

∑
j 6=i t̄j , the timing of all blocks of (f, t) except i.

Example 6. The following extension of Example 1 is the
common structure of several serial-bit algorithms such as our
running example (Hamming distance), but also implementa-
tions of RSA and AES (see case studies, Section VI). Here

fi refers to a functionality and ti : K ×M → {0, 1} to a
predicate seen as a timing model.

s = m
for i = 0 to n− 1 do
s = fi(k, s)
if ti(k, s) = 1 then g()

done

This is modelled in our formalism as the sequential com-
position of the blocks (f1, t1), . . . , (fn, tn). The Hamming
distance may be seen as an instance of this pattern with
fi(k, s) = s and ti(k, s) = ki ⊕ si.

B. Aggregation of Timing Information

Proposition 4. If the implementation (f, t) is composed of
(f1, t1), . . . , (fn, tn), then

dLeak(t) ⊇
n⋂
i=1

dLeak(t̄i)

The proposition follows because whenever two secrets that
are indistinguishable in terms of the execution time of each
individual block, they are also indistinguishable in terms of
the overall execution time. The converse is not necessarily
true, because variations of the execution time of two individual
blocks may cancel each other out. That is, secrets that are
distinguishable in each block need not be distinguishable in t.

We next exhibit structural conditions on the program that
guarantee that timing leaks of different blocks do not cancel
out. With those conditions, we obtain equality in Proposition 4.

C. Possibilistic Independence

We define a possibilistic notion of independence of blocks.
Intuitively, blocks are independent if the adversary is able to
induce variations in the timing of a specific target block t̄i
while keeping the timing of the other blocks t̄−i constant.
This is technically formalised as follows.

Definition 2. The composition of (f1, t1), . . . , (fn, tn) is
independent if, for all i ∈ Nn, there exists M ′ an equivalence
class of Query(t̄−i) such that for all M ′′ equivalence class of
Query(t̄i), M ′ ∩M ′′ 6= ∅. We call the set M ′ a calibrator for
ti in t.

Equivalently, independence implies that for each i there is a
set of messages—the calibrator—that allows for exercising all
behaviours of t̄i while keeping its complement t̄−i constant.

Example 7. The blocks of the Hamming distance timing
model (see Example 6) are independent. To see this, observe
that any pair of messages m,m′ with mi 6= m′i is a repre-
sentative system for the two equivalence classes of Query(t̄i).
For ensuring that m and m′ are equivalent for Query(t̄−i) we
additionally require mj = m′j for all j 6= i. That is, any pair
of messages {m,m′} that differ only in the ith bit form a
calibrator for ti in t.

The fundamental idea behind possibilistic independence is
to allow queries to oracles of a single block t̄i from a query
to the whole timing model t:

Proposition 5. Let an implementation (f, t) be composed of
blocks (f1, t1), . . . , (fn, tn). If m0 and m1 are equivalent for
Query(t̄−i), then

t(k,m0)− t(k,m1) = t̄i(k,m0)− t̄i(k,m1) .

This formalises the simple idea that, when restricted to a
domain where t̄−i is constant, comparing execution times w.r.t.
t is equivalent to comparing execution times w.r.t. t̄i. This
enables information aggregation by divide-and-conquer under
the independence assumption, hence equality in Proposition 4:

Corollary 6. Let (f, t) be independently composed of the
blocks (f1, t1), . . . , (fn, tn). Then

dLeak(t) =

n⋂
i=1

dLeak(t̄i)

D. Probabilistic Independence

We now state a probabilistic variant of the notion of
independence of blocks introduced above. Probabilistic inde-
pendence is a property about the probability distribution of
timings. This allows for reconstructing the timing behaviour of
a single block in expectation from the overall execution time,
thus avoiding the task of identifying calibrators (see previous
section).

Definition 3. Let X be a uniform random variable on M . We
say that the blocks (f1, t1), . . . , (fn, tn) are probabilistically
independent if for all k1, . . . , kn ∈ K, the random variables
t̄1(k1, X), . . . , t̄n(kn, X) are mutually independent.

Example 8. The blocks of the Hamming distance timing
model (see Example 7) are probabilistically independent.
This is because, for any k0, . . . , kn−1 ∈ {0, 1} and X =
X0 · · ·Xn−1 returning vectors of n independent and uniformly
distributed bits, the bits k0 ⊕X0, . . . , kn−1 ⊕Xn−1 are also
independent and uniformly distributed.

The fundamental idea behind possibilistic independence is
to allow for computing expectations of t̄i from queries to the
whole timing model t:

Proposition 7. Let (f, t) be composed of probabilistically
independent blocks (f1, t1), . . . , (fn, tn). If M ′ ⊆ M is non-
empty, we write µ(t,M ′) = 1

|M ′|
∑
m∈M ′ t(k,m) the expec-

tation of t(k, ·) on M ′. Then for all M0,M1 ∈ Sample(t̄i),

µ(t,M0)− µ(t,M1) = µ(t̄i,M0)− µ(t̄i,M1)

Proof. It sufficies to remark that µ(t,M ′) is the conditional
expectation E[t(k,X) | X ∈ M ′], and that the events “X ∈
Mb” are equivalent to events of the form “t̄i(kb, X) = ob” for
some kb ∈ K and ob ∈ O. The result then follows from the

assumption of independence, more precisely from the fact that
for all b ∈ {0, 1},

E[t̄−i(k,X) | t̄i(kb, X) = ob] = E[t̄−i(k,X)] .

This propositions formalises the idea that, over the preimage
samples of t̄i, comparing timing expectations w.r.t. t is equiv-
alent to comparing timing expectations w.r.t. t̄i. This therefore
enables information aggregation by divide-and-conquer, hence
equality in Proposition 4:

Corollary 8. Let (f, t) be composed of the probabilistically
independent blocks (f1, t1), . . . , (fn, tn). Then

dLeak(t) =

n⋂
i=1

dLeak(t̄i)

IV. DETERMINISTIC TIMING ATTACKS

A timing attack against an implementation (f, t) is an
algorithm which, for unknown k∗, outputs the class [k∗] of
dLeak(t), given only oracle access to t(k∗, ·).

In this section we describe and analyse a timing attack
by divide-and-conquer against implementations that are com-
posed of independent blocks. To illustrate the gain in efficiency
by divide-and-conquer, we present a bruteforce attack that
serves as a baseline for comparison. We begin by discussing
the cost model we use for evaluating attacks in this paper.

A. Cost model

We refer to the equivalence classes of dLeak(t) and
Query(t) as the reduced value table of t. For reasoning
about the cost of attacks we assume that the adversary can
access equivalence classes of dLeak(t) and Query(t) in time
O(1). For convenience of notation, we write |dLeak(t)| and
|Query(t)| to refer to the correponding numbers of equivalence
classes.

We express the cost of attack against a composition of
implementations (f1, t1), . . . , (fn, tn) in terms of

• number of calls to the oracle t(k∗, ·) (online steps)
• number of accesses to the reduced value tables of the t̄i

(offline steps)

This cost model captures an adversary that can make use of
obvious redundancy in a value-table representation of t, but
that cannot exploit any deeper mathematical structure of t.
We currently do not take into account the cost of constructing
the tables. Note that bounds w.r.t this notion of cost do
not represent lower bounds for performing attacks against
functions with richer mathematical structure.

The cost analysis we perform is parametric in the sizes of
the reduced value tables of each component t̄i. For bit-serial
implementations with information-flow across the blocks,
leveraging the knowledge K ′ ⊆ K gained by attacking blocks
t̄0 . . . t̄i−1 when attacking block t̄i can significantly reduce
the cost of an attack. In our model, this means considering

dLeak(t̄i,K
′) and Query(t̄i,K

′) instead of dLeak(t̄i) and
Query(t̄i). This reduction is orthogonal to the one considered
in the algebraic statements of Corollaries 6 and 8 and the
remainder of the paper, and we use it only as a heuristic.

B. Attack by Brute Force

The attack follows the ideas developed in Section II-D,
in particular Proposition 2 (ii). It queries t∗ = t(k∗, ·) on
representatives of each equivalence class of Query(t), and
compares the resulting vector to those that would be obtained
for different equivalence classes of dLeak(t). This is detailed
in Algorithm 1.

Algorithm 1: A timing attack by brute force

PARAMETERS
(f, t) : an implementation
t∗ : an oracle to t(k∗, ·) with unknown k∗

K ′ ⊆ K : prior attacker knowledge on k∗

M ′ ⊆M : restriction of the set of queries

def BFAttack(t, t∗,K ′,M ′) =
Pick m1, . . . ,ms ∈M ′, representants of the
equivalence classes of Query(t,K ′)
Compute o∗ = (t∗(m1), . . . , t∗(ms))

for [k] equiv. class of dLeak(t,K ′) do
Compute o = (t(k,m1), . . . , t(k,ms))
if ||o∗ − o|| = 0 then return [k]

Overall, Algorithm 1 recovers the equivalence class of the
secret in one traversal of the reduced value table.

Proposition 9. For every k∗ ∈ K, Algorithm 1 recovers the
equivalence class [k∗] of dLeak(t) with |Query(t)| online steps
and |dLeak(t)| |Query(t)| offline steps.

The bruteforce algorithm is in general impractical. Both
dLeak(t) and Query(t) may contain as many equivalence
classes as K, which makes exhaustive exploration infeasible
for targets such as cryptographic algorithms. We next discuss
divide-and-conquer attacks that make efficient use of the
structure of composed programs.

C. Attack by Divide-and-Conquer

We next describe attacks against implementations that are
composed of independent blocks (f1, t1), . . . , (fn, tn). The
core idea is to perform bruteforce attacks on the subprograms
t̄i by choosing inputs keeping t̄−i constant, as described in
Section III-C (Proposition 5). Algorithm 2 gives a formal
account of this procedure.

Proposition 10. Algorithm 2 recovers the equivalence class
[k∗] of dLeak(t) with

∑n
i=1 |Query(t̄i)| online steps and∑n

i=1 |dLeak(t̄i)| |Query(t̄i)| offline steps.

Algorithm 2: An attack by divide and conquer

PARAMETERS
(fi, ti)i∈Nn : independent blocks of (f, t)
t∗ : an oracle to t(k∗, ·) with unknown k∗.

def DCAttack(t, t∗) =
K ′ = K
for i ∈ Nn do

Pick a calibrator M ′ for ti in t
K ′ = BFAttack(t̄i, t

∗,K ′,M ′)

return K ′

While Definition 2 guarantees the existence of witnesses
for ti in t, note that Algorithm 2 abstracts from the cost of
identifying such inputs—which may be intractable for some
programs—in the count of offline steps. We leave an investi-
gation of this problem to future work. The following example
illustrates the potential gain in efficiency of aggregation by
divide-and-conquer.

Example 9. Consider again the Hamming distance and its
decomposition in Example 7. Each pair m1,m2 that differs
only in bit i form a calibrator M ′ = {m1,m2} for t̄i in t.
Hence, by Proposition 10, Algorithm 2 recovers the key with

n−1∑
i=0

|Query(t̄i)| = 2n online steps

n−1∑
i=0

|dLeak(t̄i)| |Query(t̄i)| = 4n offline steps

Typically, one instance of the attack can be rephrased as the
more intelligible decision criterion

k∗i = 0 iff t∗(0) < t∗(2i) .

In contrast, the bruteforce Algorithm 1, performs
n−1∏
i=0

|Query(t̄i)| = 2n online steps

n−1∏
i=0

|dLeak(t̄i)| |Query(t̄i)| = 4n offline steps.

which illustrates the efficiency gained by exploiting the pro-
gram structure. Note that here 2n is the number of symbolic
executions of the program. Hence, on such examples, symbolic
approaches such as [10], [12], [13], [19] enumerating all
symbolic executions are not likely to scale.

V. RANDOMISED TIMING ATTACKS

We follow the same approach as the previous section, but
resorting to the probabilistic variant of independence. The key
difference to the deterministic setting is that attacks do not
rely on identifying calibrators. In this context, the attacker
chooses the number of (random) online steps, depending on

their resources. Our goal is to study the relation between the
number r of online steps and the probability of success of the
attack.

A. Randomised Attack by Brute Force

The attack follows the ideas developed in Section II-D,
Proposition 2 (iii). By randomly querying the oracle t∗ =
t(k∗, ·), it approximates the expectation of t∗ on the samples
of Sample(t), and compares the resulting vector to the vectors
that would be obtained for different classes [k] of dLeak(t).
The attack is detailed in Algorithm 3.

Algorithm 3: Randomised attack by bruteforce

PARAMETERS
(f, t) : an implementation
t∗ : an oracle to t(k∗, ·) with unknown k∗

K ′ ⊆ K : prior attacker knowledge on k∗

M ′ : multiset of r random messages

def BFRAttack(t, t∗,K ′,M ′) =

o∗ =

(
1

|M ′∩S|
∑

m∈M ′∩S
t∗(m)

)
S∈Sample(t,K′)

for [k] in dLeak(t,K ′) do

ok =

(
1
|S|
∑
m∈S

t(k,m)

)
S∈Sample(t,K′)

return argmin
[k]∈dLeak(t,K′)

||o∗ − ok||

Intuitively, the attack works because the empirical vector
o∗ obtained from timing measurements gets close to the
right ideal vector ok∗ with high probability if the number of
random samples r is great enough. In particular, the attack is
guaranteed to succeed if the distance between the two vectors
goes below a certain threshold

δ(t) =
1

2
min{||ok − ok′ || 6= 0} .

The actual cost analysis is stated in Proposition 11 below,
where M ′ is seen as a random variable obtained from r
independent, uniform samplings in M .

Proposition 11. Algorithm 3 recovers the equivalence class
[k∗] of dLeak(t) with

|dLeak(t)| (r + |dLeak(t)| |Query(t)|)

offline steps, and probability of failure bounded by

|dLeak(t)| 3α
r

p2

with p = min{|S| | S∈Sample(t)}
|M | and α = 1− p+ pe

− 2δ(t)2

||t||2 .

Proof. Regarding the count of offline steps, the computation
of o∗ can be done in |dLeak(t)| traversals of the sample M ′,
one for each different equivalence relation '

k. This requires

|dLeak(t)| r offline steps. Then computing the vectors ok
requires |dLeak(t)| traversals of the reduced value table of
t, adding |dLeak(t)|2 |Query(t)| steps to the count.

As for the failure probability, the idea is to bound it
by P[||o∗ − ok∗ || > δ(t)]. Then, to bound this quantity by
|dLeak(t)| 3αr

p2 , we apply the law of total expectations to fix the
size of M ′ ∩S and then Hoeffding’s inequality. The technical
details are provided in Appendix B.

As a corollary, we can fix the maximal probability of failure
tolerated ε, and deduce a number of random online steps
r sufficient to obtain it. This is formalised below, and the
technical computations are detailed in Appendix B.

Corollary 12. For all ε > 0, Algorithm 3 has a probability
of failure of at most ε, provided that

r >
a

p

(
ln

1

ε
+ b

)
,

where a = 3||t||2
2δ(t)2 and b = 2 ln |dLeak(t)|p + ln 3.

In the count of online and offline steps, the dominant terms
are 1

p and the size of the reduced value table. For example for
the Hamming distance in Example 1, we have 1

p = |K| = 2n

for bitvectors of length n. We next discuss divide-and-conquer
attacks that make efficient use of probabilistic independence.

B. Attack by Divide-and-Conquer

We next describe attacks against composition of probabilis-
tically independent blocks (f1, t1), ..., (fn, tn). The core idea
is that the bruteforce attack on t̄i can be performed with oracle
to the whole t without the need to account for the noise
induced by the complement t̄−i, as described in Section III-D
(Proposition 7). Algorithm 4 gives a formal account of this
simple procedure.

Algorithm 4: Randomised attack by divide & conquer

PARAMETERS
(fi, ti)i∈Nn : probab. indep. blocks of (f, t)
t∗ : an oracle to t(k∗, ·) with unknown k∗

r : number of random online steps

def DCRAttack(t, t∗, r) =
M ′ = sample of r messages
K ′ = K
for i ∈ Nn do

K ′ = BFRAttack(t̄i, t
∗,K ′,M ′)

return K ′

The cost of this attack is mostly the sum of the costs of the
attacks on each independent blocks.

Proposition 13. Algorithm 4 recovers the equivalence class
[k∗] of dLeak(t) with

n∑
i=1

|dLeak(t̄i)| (r + |dLeak(t̄i)× Query(t̄i)|)

offline steps, and probability of failure bounded by
n∑
i=1

|dLeak(t̄i)|
3αri
p2
i

,

pi = min{|S| | S∈Sample(t̄i)}
|M | and αi = 1− pi + pie

− 2δ(t̄i)
2∑

j ||t̄j ||2 .

As for the bruteforce attack, inverting the relation between
r and the probability of failure gives an upper bound on the
number of random online steps needed to guarantee a success
rate of at least 1− ε.

Corollary 14. For all ε > 0, Algorithm 4 has a probability
of failure of at most ε, provided that

r >
an

mini pi

(
ln
n

ε
+ b
)
,

where a = 3 maxi ||t̄i||2
2 mini δ(t̄i)2 and b = 2 ln maxi|dLeak(t̄i)|

mini pi
+ ln 3.

The following example illustrates the potential gain in
efficiency of aggregation by divide-and-conquer. We support
it by an experimental evaluation detailed below.

Example 10. Consider once again the Hamming distance
and its independent decomposition in Example 7. We have
Sample(t̄i) = {M0

i ,M
1
i }, where M b

i is the set of bitvectors
whose ith bit is b. That is,

M b
i = {m ∈ {0, 1}n | mi = b} .

In particular we have pi = 1
2 for all i and Proposition 13

and corollary 14 therefore justify that

O
(
n ln

n

ε

)
random online steps

O
(
n2 ln

n

ε

)
offline steps

are sufficient to carry out an attack against this timing model
with probability of success at least 1− ε. Typically, the attack
can be rephrased as the more intelligible decision criterion

k∗i = 0 iff
1

|M0
i |
∑
m∈M0

i

t∗(m) <
1

|M1
i |
∑
m∈M1

i

t∗(m) .

Experimental validation We conclude this section with
an experimental validation of the above online-cost analysis
of the attack against the Hamming distance. We do so by
computing the probability of success of Algorithm 4 on a
simulated Hamming distance timing model. Our goal is to
estimate the number of measurements needed to achieve a
desired probability of success 1− ε for bitvectors of different
lengths n.

To this end, we fix the length n of the secret bit-vectors and
a target success probability of 1− ε (in our case: 75%). For a

constant number of rounds N , we randomly select a key k∗,
sample r independent messages from a uniform distribution,
and compute the success probability of Algorithm 4 over these
N rounds. We then adapt the number of queries r by binary
search, and repeat the process with the goal of matching the
target success probability 1− ε. We finally return the average
number of online steps obtained this way for several keys k∗.

Figure 1 depicts the curve of the r that achieve a probability
of success of 1− ε as a function of the input size n, together
with an interpolation in O(n lnn).

Fig. 1. Number of online steps needed to ensure success probability of 0.75
for Algorithm 4 when targetting the Hamming distance timing model as a
function of input size n.

VI. CASE STUDIES

We finally show how our model, in particular the random-
ized attack against probabilistically independent blocks, can
be used to explain high-profile attacks of the literature against
implementations of RSA and AES [5], [14]. In both cases we
provide a description of the target timing model, describe the
referenced attack against it, and explain in what sense it is an
instance of Algorithm 4.

A. RSA With Montgomery Multiplication

The target (reference) We consider an implementation of
RSA based on bit-serial modular exponentiation. Here

K = {k ∈ {0, 1}n | kn−1 = 1}

is the set of bitvectors whose most significant bit is set to 1,
and M = Z/pZ is the set of integers modulo p. Multiplication
in Z/pZ is replaced by the more efficient Montgomery multi-
plication, which boils down to a group isomorphism φ from
(Z/pZ,×) to a group (G,⊗) where multiplications are easier
to compute. The pseudocode for modular exponentiation is
given by Algorithm 5.

There is a vulnerability in that ⊗ is not constant-time:
computing a⊗ b takes longer for some operands a, b because

Algorithm 5: Computing mk (mod p)

x = φ(m)
for i = n− 2 downto 0 do

x = x⊗ x
if ki = 1 then x = x⊗ φ(m)

return φ−1(x)

of a conditional subtraction, usually called a Montgomery
reduction. The differential execution time of the whole expo-
nentiation is thus proportional to the number of Montgomery
reductions that happened during the computation. We model
this behaviour using T : G×G→ {0, 1} as the timing model
of ⊗, where T (a, b) = 1 means that a Mongomery reduction
occurred during the computation of a⊗ b.

The attack (reference) We recall an attack presented in [5]
that targets the square instruction at loop index i−1 to recover
k∗i the ith bit of the secret. The core idea is the following:

(1) Assuming bits k∗n−2, k
∗
n−3, . . . , k

∗
i+1 have already been

recovered from previous attack steps, one can potentially
compute for any initial input m the value xm of the
variable x just before the execution of the instruction
“if ki = 1 thenx = x⊗ φ(m)”.

(2) After this intruction, the value of x may be either xm
or xm ⊗ φ(m), depending on the value of k∗i . For
each of these two potential values, one splits the set M
accordingly to whether an element m ∈ M induces a
Montgomery reduction or not during the next instruction
x⊗x. That is, writing Cbx = {m ∈ Z/pZ | T (x, x) = b},
we compute the two partitions

P0 = {C0
xm , C

1
xm} P1 = {C0

xm⊗φ(m), C
1
xm⊗φ(m)}

(3) The intuition is then that the split Pk∗i should be em-
pirically more significant than P1−k∗i . That is, the attack
criterion is that k∗i = 0 if and only if

µ(C1
xm)− µ(C0

xm) > µ(C1
xm⊗φ(m))− µ(C0

xm⊗φ(m))

where µ(S) = 1
|S|
∑
m∈S t

∗(m). In practice, µ(S) is
approximised using a sample of messages drawn inde-
pendently and uniformly beforehand.

Note that an earlier attack sharing common grounds with
the above one also exists [4]. It follows a similar development
except that the multiply instructions are targeted instead of the
square instructions.

The target (in our model) We consider a decomposition
where each block corresponds to one instruction in Algorithm
5. There are two main kinds of blocks:

• the square blocks (f sqi , t
sq
i) performing the instruction, at

step i, “x = x⊗ x” and
• the multiply blocks (fmul

i , tmul
i) performing the instruction

“if ki = 1 thenx = x⊗ φ(m)”.

To fit into our model, low inputs are pairs (m,x) where m
is the initial input passed to the whole function and x is the
intermediary store. The formal description of the block decom-
position is provided in Appendix C. In the attack literature [4],
[5], the execution times of the different multiplications are
assumed to satisfy a kind of independence property, which is
what we formalise as probabilistic independence of this block
decomposition.

The attack (in our model) The squaring instruction at loop
index i− 1 leaking the value of k∗i provided prior knowledge
of k∗n−2, . . . , k

∗
i+1 is modelled by

dLeak(t̄sqi−1,K
′) = {K0

i ∩K ′,K1
i ∩K ′}

with Kb
i = {k ∈ K | ki = b} and K ′ =

⋂n−2
j=i+1K

k∗j
j .

In particular this emphasises the need for taking profit of the
knowledge aggregated during previous attack steps to keep the
search space constant in size at each step, see Section IV-A.

The randomised attack described by Algorithm 4 thus leads
to the attack described above. In particular, step (2) describes
how to compute

Sample(t̄sqi−1,K
′) = P0 ∪ P1 .

Then step (3) rephrases more intelligibly the identification of
the class [k∗] of dLeak(t̄sqi−1,K

′), which was formalised in
our model by generic comparisons of vectors using ||·||.

Experiments A proof of concept of this attack against
a smartcard emulator has already been implemented in [5].
However, the focus was on the estimation of the online cost
(i.e. the number of measurements needed) rather than on the
efficiency of the offline part (i.e. the attack time, measurements
excluded). We give here an insight of the growth of offline
worktime when the keysize increases.

Attacks derived from Algorithm 4 separates between an
initial online phase where all measurements are made, and
offline computations that do not depend on how measurements
were obtained. For simplicity, we therefore implemented a
simulation of the attack where we replaced measurements
of real time by a counter of Montgomery reductions. From
the same number of measurements as in [5], our simulation
recovered a 512-bit RSA key after 6 minutes of offline work.

Besides, such attacks can significantly benefit from par-
allelism. Indeed they mainly compute partitions and expec-
tations, tasks that can easily be distributed by assigning to
parallel subprocesses a fraction of the initial random sample
M ′. Experimental results are collected in Figure 2.

Offline work
Keysize Online steps

1 core 35 cores
256 70,000 25s 2s
512 300,000 6min 30s

1024 1,200,000 1h40 6min

Fig. 2. Cost of the attack against RSA with Montgomery multiplications

B. AES With Precomputed Tables

The target (reference) We consider an implementation
of AES [20] using precomputed T-tables. The timing model
of this implementation takes the CPU cache into account,
mechanism that is at the core of the vulnerability. We write
(Z8,⊕) the group of 8-bit integers (bytes) equipped with xor.
Here K = M = Z128 is the set of 128-bit integers seen as
sequences of 16 bytes (most significant byte first). The ith

byte of a ∈ Z128 is written ai.

Tables Ti : Z8 → (Z8)4, 0 6 i 6 7, are precomputed as
well as round keys k(r) ∈ K, 1 6 r 6 10, that are derived
from the secret k ∈ K (details in the specification [20]).
Besides we define, if x ∈ Z128:

L0(x) = (x0, x4, x8, x12) L2(x) = (x10, x14, x2, x6)

L1(x) = (x5, x9, x13, x1) L3(x) = (x15, x3, x7, x11)

If T : Z8 → (Z8)4 and L(x) = (x`1 , x`2 , x`3 , x`4) we write
T [L(x)] ∈ Z128 the integer obtained by concatenation of
the four outputs T [x`1], T [x`2], T [x`3], T [x`4]. Encryption of
message m ∈M is then described in algorithm 6.

Algorithm 6: 128-bit AES with precomputed tables

x← k ⊕m

for r = 1 to 9 do
x = k(r) ⊕

⊕3
`=0 T`[L`(x)]

x = k(10) ⊕
⊕3

`=0 T`+4[L`(x)]

return x

The control flow of this program is not dependent on the
input. All timing variations are due to the effect of the program
on the cache.

If a table entry is requested but is not in the cache, it has to
be fetched from main memory, producing a slow cache miss.
If a table entry is already in the cache it can be served from
there, producing a fast cache hit. In the differential model,
the timing model t captures the total number of cache misses
occurring during the program execution; that is, we use the
convention that the execution time of a memory access is 0
or 1 depending on whether it is a cache hit or a cache miss.

The attack (reference) We recall the two-round attack
presented in [14] that targets 20 memory accesses spread
over the first two rounds of the loop of Algorithm 6. We
only present here the attack on the memory accesses of
the first round, as the second-round attack follows the exact
same development if not for more intricate reduced value
tables. Omitted details can easily be inferred from the attack
description in [14]. The core idea is the following:

(1) The first round of the loop contains 16 memory accesses,
12 of which inducing timing variations (the first access
to each table T0, . . . , T3 is always a miss).

(2) For each of these 12 blocks, targeted by order of ap-
pearance, whether a cache hit occurs is determined by an
equation of the form

〈k∗i ⊕ k∗j 〉 = g(m)

where 〈α〉 = b α16c for common microarchitectures. For
each of the 16 potential values of 〈k∗i ⊕ k∗j 〉, one splits
the set M accordingly to whether input m ∈M induces
a cache hit or a cache miss. That is, writing

C∼
` = {m ∈M | 〈k∗i ⊕ k∗j 〉 ∼ g(m)} ,

we compute the 16 partitions

P` = {C=
` , C

6=
` } 0 6 ` 6 15

(3) The intuition is then that the split P〈k∗i⊕k∗j 〉 should be
empirically more significant than the 15 others. That is,
given oracle t∗, the criterion is

〈k∗i ⊕ k∗j 〉 = argmax
06`615

µ(C 6=`)− µ(C=
`)

where µ(S) = 1
|S|
∑
m∈S t

∗(m). In practice, µ(S) is
approximised using a sample of messages drawn inde-
pendently and uniformly beforehand.

This permits to recover the equivalent of 48 bits of the
secret. The 80 remaining bits are recovered similarly by
targeting the four memory accesses to T0 of the second round
of the loop. This is however a costly attack as these four blocks
exhibit quite large reduced value tables (sizes 212 to 232).

The target (in our model) We consider a decomposition
where each block corresponds to one of the 160 memory
accesses of the implementation. Messages are pairs (C, x),
where C is the state of the cache and x is the intermediary
state of the computation. A formal description of the blocks
is provided in Appendix C. In [14], the memory accesses
are assumed to verify an independence property, which is
what we formalise as probabilistic independence of this block
decomposition.

In [14], the assumption is made that the target is located
on a distant server with enough workload to guarantee that
any data related to AES is evicted of the cache between two
measurements. For local targets, the attacker may also fetch
garbage data into the cache by meaningless memory accesses
to force this eviction. This makes the timing behaviour of
t only depend on arguments k and m, and not on previous
invocations of the oracle.

The attack (in our model) If (fn, tn) is a block corre-
sponding to one of the 12 leaking memory accesses of the first
round, and if K ′ is an equivalence class of dLeak(t̄n−1), then
dLeak(t̄n,K

′) has 16 equivalence classes. This models the fact
that targeting a memory access of the first round permits to
identify the value of a 〈ki ⊕ kj〉 among the 16 possible such.

The randomised attack described by Algorithm 4 thus leads
to the attack of [14]. In particular, step (2) describes how to
compute

Sample(t̄n,K
′) =

15⋃
`=0

P` .

Then step (3) rephrases more intelligibly the identification of
the class [k∗] of dLeak(t̄n,K

′), which was formalised in our
model by generic comparisons of vectors using ||·||.

VII. RELATED WORK

A number of models for expressing aggregate leakage are
based on discrete representations of adversary knowledge as
partitions, such as [7], [21]–[23]. Other approaches capture
knowledge probabilistically, in terms of adversary beliefs [24],
[25], which are updated by Bayesian revision.

Both kinds of approaches have been automated. The first
approach for the discrete case is [8], which uses expensive
quantifier elimination on linear arithmetic to intersect parti-
tions corresponding to different runs. More recent approaches
use symbolic execution to [11], [12], [19] compute preimages
along the paths of a program. Automation for the probabilistic
model has been considered in [9], [10], [13].

Our approach differs from previous work in that we aim
to model real-world attacks rather than to derive worst-case
bounds. On a technical level this is reflected in two aspects:
first, our differential timing model does not require having an
exact (probabilistic or deterministic) model of the execution
time. Second, our approach does not rely on the enumeration
of secrets or paths, which is why it can model and explain
efficient attacks on programs with exponentially many paths,
such as RSA. We currently investigate the use of our model
as a basis for automatic vulnerability analysis.

A line of work investigates the special case of aggregation
via the termination behaviour of programs. While termination
behaviour can in principle leak unbounded amounts of infor-
mation [26], this leakage is limited to one bit if the adversary
cannot control the termination behaviour [27]. In our model,
this observation corresponds to a noninterference result w.r.t.
differential observers, see Proposition 3.

Technically different but similar in spirit to our work
is an analytic model that explains the efficiency of timing
attacks for the special case of AES [28], and a comprehensive
approach for reasoning about the efficiency of power analysis
attacks [29].

Finally, while our model is cast in the language of
information-flow analysis, some central ideas (such as prob-
abilistic independence as a basis for attacks by divide-and-
conquer) are inspired from the literature on attacks, in partic-
ular [5].

VIII. CONCLUSION

We presented a novel model for reasoning about information
aggregation in timing attacks that bridges attack research with
information-flow analysis. From the point of view of attack
research, we provide the first uniform explanation of high-
profile timing attacks in a simple formal model. From the
point of view of information-flow analysis, we provide novel
notions of timing measurements and compositionality that are
a promising basis for improving realism and scalability of
automatic vulnerability analysis and attack generation.

Acknowledgments We thank Michele Boreale for initial
discussions and the anonymous reviewers for their constructive
feedback. Part of this work was carried out at the IMDEA
Software Institute, supported by a grant from the Intel Cor-
poration, Ramón y Cajal grant RYC-2014-16766, Spanish
projects TIN2015-70713-R DEDETIS and TIN2015-67522-
C3-1-R TRACES, Madrid regional project S2013/ICE-2731
N-GREENS. Work at INRIA Nancy Grand-Est was supported
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
645865-SPOOC), and the French National Research Agency
(ANR) project TECAP (ANR-17-CE39-0004-01).

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference (CRYPTO), 1999.

[2] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming and Security, 2001.

[3] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in International workshop on cryptographic hardware
and embedded systems, 2001.

[4] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Annual International Cryptology
Conference (CRYPTO), 1996.

[5] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater,
and J.-L. Willems, “A practical implementation of the timing attack,”
in International Conference on Smart Card Research and Advanced
Applications (CARDIS), 1998.

[6] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, 2005.

[7] B. Köpf and D. Basin, “An Information-Theoretic Model for Adaptive
Side-Channel Attacks,” in ACM Conference on Computer and Commu-
nications Security (CCS), 2007.

[8] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic Discovery and
Quantification of Information Leaks,” in IEEE Symposium on Security
and Privacy (S& P), 2009.

[9] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa, “Dynamic enforce-
ment of knowledge-based security policies,” in IEEE Computer Security
Foundations Symposium (CSF), 2011.

[10] P. Malacaria, M. Khouzani, C. Pasareanu, Q.-S. Phan, K. Luckow et al.,
“Symbolic side-channel analysis for probabilistic programs,” in IEEE
Computer Security Foundations Symposium (CSF), 2018.

[11] Q. H. Do, R. Bubel, and R. Hähnle, “Exploit generation for information
flow leaks in object-oriented programs,” in ICT Systems Security and
Privacy Protection, 2015.

[12] Q. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in IEEE Computer Security
Foundations Symposium (CSF), 2017.

[13] L. Bang, N. Rosner, and T. Bultan, “Online synthesis of adaptive
side-channel attacks based on noisy observations,” in IEEE European
Symposium on Security and Privacy (EuroS&P), 2018.

[14] O. Acıiçmez, W. Schindler, and Ç. K. Koç, “Cache-based remote timing
attack on the AES,” in Cryptographers’ Track at the RSA Conference
(CT-RSA), 2007.

[15] D. Bernstein, “Cache-timing attacks on AES,” document available at
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[16] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of AES,” in CT-RSA, 2006.

[17] J. Landauer and T. Redmond, “A lattice of information,” in IEEE
Computer Security Foundations Symposium (CSF), 1993.

[18] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” Journal of Computer Security, 2009.

[19] P. Malacaria, C. S. Pasareanu, and Q. Phan, “Multi-run side-channel
analysis using symbolic execution and max-SMT,” in IEEE Computer
Security Foundations Symposium (CSF), 2016.

[20] J. Daemen and V. Rijmen, “The design of rijndael: Aes-the advanced
encryption standard,” 2013.

[21] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifi-
cation, encryption and key release policies,” in IEEE Symposium on
Security and Privacy (S& P), 2007.

[22] M. Boreale and F. Pampaloni, “Quantitative information flow under
generic leakage functions and adaptive adversaries,” Logical Methods
in Computer Science, 2015.

[23] M. S. Alvim, M. E. Andrés, and C. Palamidessi, “Quantitative informa-
tion flow in interactive systems,” Journal of Computer Security, 2012.

[24] M. R. Clarkson, A. C. Myers, and F. B. Schneider, “Quantifying
information flow with beliefs,” Journal of Computer Security, 2009.

[25] P. Mardziel, M. S. Alvim, M. W. Hicks, and M. R. Clarkson, “Quan-
tifying information flow for dynamic secrets,” in IEEE Symposium on
Security and Privacy (S&P), 2014.

[26] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-
insensitive noninterference leaks more than just a bit,” in European
Symposium on Research in Computer Security (ESORICS), 2008.

[27] A. Birgisson and A. Sabelfeld, “Multi-run security,” in European Sym-
posium on Research in Computer Security (ESORICS), 2011.

[28] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen, “An analytical model
for time-driven cache attacks,” in Fast Software Encryption (FSE), 2007.

[29] F. Standaert, T. Malkin, and M. Yung, “A unified framework for the
analysis of side-channel key recovery attacks,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2009.

APPENDIX A
ON THE CHARACTERISATION OF TIMING LEAKS

In Section II-D, we formalised criterions to identify whether
two secrets were producing the same differential-time oracles
(Proposition 2). The proof of the implication (iii)⇒ (i) was
left pending in the paper body. We prove the following lemma.

Lemma 15. Let Sample(t) = {M1, . . . ,Mq} and the notation
µi(k) = 1

|Mi|
∑
m∈Mi

t(k,m). If for all i ∈ J1, qK, µi(k) =

µi(k
′), then t(k, ·) = t(k′, ·).

This lemma easily implies the missing proof, keeping in
mind that [k] = [k′] in dLeak(t) iff there exists a constant c
such that t(k, ·) = t(k′, ·) + c (Equation (2)). We prove the
following more general result on oracles:

Lemma 16. Let h, h′ be two oracles s.t. for all o ∈ O,

(i) if h′−1(o) 6= ∅, then 1
|h′−1(o)|

∑
m∈h′−1(o)

h(m) = o;

(ii) if h−1(o) 6= ∅, then 1
|h−1(o)|

∑
m∈h−1(o)

h′(m) = o.

Then h = h′.

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

This lemma implies Lemma 15. To see that it sufficies
to choose h = t(k, ·) and h′ = t(k′, ·), and remark
that Sample(t) contains all non-empty samples h−1(o) and
h′−1(o). With h−1(o) = Mi, note in particular the argument
that 1

|h−1(o)|
∑

m∈h−1(o)

h′(m) = µi(k
′) and o = µi(k).

Proof of Lemma 16. Let us exhibit a contradiction under the
assumptions (i), (ii) and h 6= h′. By symmetry, assume
h(m0) < h′(m0) for some m0 ∈ M . Then there needs
be m1 ∈ M such that h′(m0) = h′(m1) < h(m1),
otherwise we would have the following contradiction with (i)
for o = h′(m0):

1

|h′−1(o)|
∑

m∈h′−1(o)

h(m) < o .

With a symmetric reasoning, the hypothesis (ii) gives a
message m2 ∈ M such that h(m1) = h(m2) < h′(m2).
By iterating this two-step argument, we can thus construct
inductively a sequence of messages (mi)i∈N such that

h′(m0) < h(m1) < h′(m2) < h(m3) < h′(m4) < · · · .

In particular, the messages m2i, i ∈ N, are pairwise disjoint,
in contradiction with the finiteness of M .

APPENDIX B
COST ANALYSIS FOR THE RANDOMISED ATTACKS

In Section V we presented randomised timing attacks and
an analysis of their costs, but most technical arguments have
been omited. The detailed arguments in this section.

Most of the results follow from the following technical
statement (with the notations of Algorithm 3 and seeing the
multiset M ′ is seen as a random variable obtained from r
independent, uniform samplings in M).

Technical Lemma 17. Let (f, t) be composed of n proba-
bilistically independent blocks (f1, t1), . . . , (fn, tn). Let also
S ⊆M non empty, t∗ = t(k∗, ·), and

o =
1

|M ′ ∩ S|
∑

m∈M ′∩S
t∗(m) and ō =

1

|S|
∑
m∈S

t∗(m) .

Then for all δ > 0, we have

P[|o− ō| > δ] 6
3αr

p

where p = |S|
|M | and α = 1− p+ pe

− 2δ2∑
i ||t̄i||2 .

This means that in Algorithm 3, the probability of each
component of o∗ differing from the corresponding component
of ok∗ beyond a fixed threshold δ can be bounded by a quantity
that decreases exponentially as the number of random online
steps r increases. The proof of this bound, detailed below,
essentially consists of applying the law of total expectations
to fix the size of M ′ ∩ S and then Hoeffding’s inequality.

Proof of Technical Lemma 17. First we observe that the ran-
dom variable o has the same distribution as

o′ =
1

N

N∑
j=1

t∗(Xj)

where Xj is uniformly distributed on S, N has a binomial
distribution of parameters r and p, and all are mutually
independent. In particular

P[|o− ō| > δ] 6 P[N = 0] + P[|o′ − ō| > δ | N 6= 0] . (3)

Then by the law of total expectations, we write

P[|o′ − ō| > δ | N 6= 0] = E[P[|o′ − ō| > δ | N,N 6= 0]] .

Besides, the random variables (t̄i(k
∗, Xj))i,j are mutually

independent as the blocks (f1, t1), . . . , (fn, tn) are probabilis-
tically independent. Therefore, by Hoeffding’s inequality,

P[|o′ − ō| > δ | N 6= 0] 6 E[2e
−2δ2N∑
i ||t̄

2
i
|| | N 6= 0]

6
2

P[N 6= 0]
E[e

−2δ2N∑
i ||t̄i||2]

6
2αr

p

by recognising the moment-generating function of N , and
because P[N 6= 0] = 1 − (1 − p)r > p. Hence the final
result by (3), as P[N = 0] = (1− p)r 6 αr

p .

This characterises the probability of failure of Algorithm 3
in that it can be bounded by the probability of at least one
difference |o− ō| going beyond the limit threshold

δ(t) =
1

2
min{||ok − ok′ || 6= 0} .

This is the core argument to prove Proposition 11 which we
recall below.

Proposition 11. Algorithm 3 recovers the equivalence class
[k∗] of dLeak(t) with

|dLeak(t)| (r + |dLeak(t)| |Query(t)|)

offline steps, and probability of failure bounded by

|dLeak(t)| 3α
r

p2

with p = min{|S| | S∈Sample(t)}
|M | and α = 1− p+ pe

− 2δ(t)2

||t||2 .

Proof. The count of offline steps is already detailed in the
paper body. As for the failure probability, by Proposition 2, if
the attack fails then ||o∗ − ok∗ || > δ(t). Besides,

P[||o∗ − ok∗ || > δ(t)]

6 P[∃S ∈ Sample(t), |o(S)− ō(S)| > δ(t)]

6
∑

S∈Sample(t)

P[|o(S)− ō(S)| > δ(t)]

where we have o(S) = 1
|M ′∩S|

∑
m∈M ′∩S t

∗(m) as well as
ō(S) = 1

|S|
∑
m∈S t

∗(m). Hence the conclusion by Technical
Lemma 17, as |Sample(t)| 6 1

p |dLeak(t)|.

Then Corollary 12 uses this result to exhibit an upper
bound on the number of random measurements to guarantee a
probability of success 1− ε in the attack. We prove this result
here.

Corollary 12. For all ε > 0, Algorithm 3 has a probability
of failure of at most ε, provided that

r >
a

p

(
ln

1

ε
+ b

)
,

where a = 3||t||2
2δ(t)2 and b = 2 ln |dLeak(t)|p + ln 3.

Proof. By Proposition 11, it sufficies to choose r such that

|dLeak(t)| 3α
r

p2
6 ε .

By composing with ln, this gives, since α < 1,

r >
ln |dLeak(t)|+ ln 3 + 2 ln 1

p + ln 1
ε

− lnα
= A .

It therefore sufficies to prove that A 6 a
p (ln 1

ε + b), where

a = 3||t||2
2δ(t)2 and b = 2 ln |dLeak(t)|p + ln 3.

First we have A 6
ln 1
ε+b

− ln(α) . By applying successively the
following identities (whose justifications are omitted):

∀t ∈]0, 1[,
1

− ln(1− t)
6

1

t
∀t ∈ R∗+,

1

1− e−t
6 1 +

1

t
.

we obtain A 6 1
p (ln 1

ε + b)(1 + ||t||2
2δ(t)2). Hence the conclusion

since 0 < δ(t) 6 ||t||, and thus 1 + ||t||2
2δ(t)2 6 a.

The cost analyses for the randomised attacks by divide-and-
conquer (Section V-B) follow along the same lines. In partic-
ular the statement of Technical Lemma 17 is general enough,
already taking into account probabilistic independence.

APPENDIX C
FORMAL BLOCK DECOMPOSITION (CASE STUDIES)

In Section VI, we recalled timing attacks from the literature
and outlined sequential decompositions the target implemen-
tations. We provide technical details here.

A. RSA With Montgomery Multiplication

The decomposition consists of two blocks performing the
computations of φ and φ−1, and 2(n− 1) blocks performing
the multiplications of the main loop. Formally, we have the
2n−1 blocks (α, 0), (f sqn−2, t

sq
n−2), (fmul

n−2, t
mul
n−2), . . ., (f sq0 , t

sq
0),

(fmul
0 , tmul

0), (ω, 0), where

• the input set is M = G × (Z/pZ) where G is the
group for Montgomery multiplications and (x,m) models
intermediary store x and initial input m;

• α(k, (,m)) = (φ(m),m) is the initial block;
• ω(k, (x,m)) = (φ−1(x),m) is the final block;
• f sqi (k, (x,m)) = x⊗ x and tsqi (k, (x,m)) = T (x, x);

• fmul
i (k, (x,m)) =

{
(x⊗m,m) if ki = 1
(x,m) otherwise

tmul
i (k, (x,m)) =

{
T (x,m) if ki = 1
0 otherwise

B. AES With Precomputed Tables

For the model, we use the following model of cache:

1) The cache is partitioned into so-called cache lines whose
size is 64 bytes. One always loads a full line into the
cache: since the tables Ti store data of 4 bytes, their
entries are therefore always copied into the cache by
groups of 64

4 = 16 entries.
2) Within a given table Ti, each entry is associated to a

cache line determined by its adress, more precisely by
its log2(16) = 4 most significant bits. That is, using the
notation of [14], by 〈α〉 = b α16c.

3) To sum up, given a table T and an entry α ∈ Dom(T),
two situations can arise when a query T [α] is made:

a. Cache hit: the entry is already in the cache and T [α]
is obtained quickly.

b. Cache miss: the entry is fetched slowly from the
main memory. The full corresponding line (all entries
β ∈ Dom(T) such that 〈β〉 = 〈α〉) is then loaded
into the cache. If the cache capacity is exceeded, some
previously-stored data is evicted from the cache.

As in [14] we assume that (1) there is enough workload
on the attacked hardware so that AES-table data is evicted
between two invocations of the program, and (2) the cache has
enough capacity so that data loaded in the cache is not evicted
during the same execution of AES. Under these assumptions,
there is a cache hit for a query T [α] iff a query T [β] such that
〈β〉 = 〈α〉 has already been performed during the execution.

The decomposition eventually consists of one initialisation
block, 160 blocks corresponding each to one memory access of
the implementation, and 10 blocks updating the store between
each round. Formally, we have the 171 blocks (α, 0), B,
(up, 0), . . ., B, (up, 0), B10, (up10, 0), where

• the input set is M = J1, 11K × 2J0,7K×Z8 × Z128 where
(r, C, x) ∈M models the round number r, intermediary
store x, and (i, y) ∈ C defines an entry of Ti in the cache;

• α(k, (, ,m)) = (1, ∅, k ⊕m) initialises the store;
• B is the sequence of 16 blocks performing the memory

accesses of a round r, named (f0
0 , t

0
0), (f4

0 , t
4
0), (f8

0 , t
8
0),

(f12
0 , t12

0), (f5
1 , t

5
1), (f9

1 , t
9
1), . . .

• a memory access to Ti[xj] is modelled by
– up(k, (r, C, x)) = (r + 1, C, k(r) ⊕

⊕3
`=0 T`[L`(x)])

– f ji (k, (r, C, x)) = (r, C ∪ {(i, 〈xj〉)}, x)

– tji (k, (r, C, x)) =

{
0 if (i, 〈xj〉) ∈ C
1 otherwise

• B10 and up10 are analogous to B and up for last round.

	Introduction
	Modelling Timing Leaks
	Programs and Timing Models
	Leaks Under Absolute Measurements
	Leaks Under Differential Measurements
	Queries to Oracles

	Compositionality in Timing Attacks
	Composition of Implementations
	Aggregation of Timing Information
	Possibilistic Independence
	Probabilistic Independence

	Deterministic Timing Attacks
	Cost model
	Attack by Brute Force
	Attack by Divide-and-Conquer

	Randomised Timing Attacks
	Randomised Attack by Brute Force
	Attack by Divide-and-Conquer

	Case Studies
	RSA With Montgomery Multiplication
	AES With Precomputed Tables

	Related Work
	Conclusion
	References
	Appendix A: On the Characterisation of Timing Leaks
	Appendix B: Cost Analysis for the Randomised Attacks
	Appendix C: Formal Block Decomposition (Case Studies)
	RSA With Montgomery Multiplication
	AES With Precomputed Tables

